Background Machine learning (ML) can offer greater precision and sensitivity in predicting Medicare patient end of life and potential need for palliative services compared to provider recommendations alone. However, earlier ML research on older community dwelling Medicare beneficiaries has provided insufficient exploration of key model feature impacts and the role of the social determinants of health. Objective This study describes the development of a binary classification ML model predicting 1-year mortality among Medicare Advantage plan members aged ≥65 years (N=318,774) and further examines the top features of the predictive model. Methods A light gradient-boosted trees model configuration was selected based on 5-fold cross-validation. The model was trained with 80% of cases (n=255,020) using randomized feature generation periods, with 20% (n=63,754) reserved as a holdout for validation. The final algorithm used 907 feature inputs extracted primarily from claims and administrative data capturing patient diagnoses, service utilization, demographics, and census tract–based social determinants index measures. Results The total sample had an actual mortality prevalence of 3.9% in the 2018 outcome period. The final model correctly predicted 44.2% of patient expirations among the top 1% of highest risk members (AUC=0.84; 95% CI 0.83-0.85) versus 24.0% predicted by the model iteration using only age, gender, and select high-risk utilization features (AUC=0.74; 95% CI 0.73-0.74). The most important algorithm features included patient demographics, diagnoses, pharmacy utilization, mean costs, and certain social determinants of health. Conclusions The final ML model better predicts Medicare Advantage member end of life using a variety of routinely collected data and supports earlier patient identification for palliative care.
BACKGROUND Machine learning (ML) offers greater precision and sensitivity in predicting Medicare patient end of life (EOL) and potential need for palliative services. However, earlier ML research on older community-dwelling Medicare beneficiaries has provided insufficient exploration of key model feature impacts and the role of the social determinants of health. OBJECTIVE This study describes the development of a binary classification ML model predicting 1-year mortality among Medicare Advantage plan members aged 65+ (N=318,774), and further examines the top features of the predictive model. METHODS A light gradient boosted trees model configuration was selected based on 5 fold cross-validation. The model was trained with 80% of cases (n=255,020) using randomized feature generation periods, with 20% (n=63,754) reserved as a holdout for validation. The final algorithm used 907 feature inputs extracted primarily from claims and administrative data capturing patient diagnoses, service utilization, demographics, and census tract-based social determinants index measures. RESULTS The total sample had an actual mortality prevalence of 3.9% in the 2018 outcome period. The final model positively predicted 41.5% of patient expirations among the top 1% of highest risk members (AUC=0.84; 95% CI: 0.83-0.85), versus 22.2% predicted by the model iteration based on age, gender, and select high-risk utilization features alone (AUC=0.73; 95% CI: 0.72-0.75). The most important algorithm features included patient demographics, diagnoses, pharmacy utilization, mean costs, and certain social determinants of health. CONCLUSIONS The final ML model better predicts Medicare Advantage members approaching EOL using a variety of routinely-collected data and can support earlier patient identification for palliative care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.