Temporins are anti-microbial peptides synthesized in the skin of frogs of the Ranidae family. The few studies to date that have examined their anti-viral properties have shown that they have potential as anti-viral therapies. In this work, we evaluated the anti-herpes simplex virus type 1 (HSV-1) activity of the temporin-SHa (SHa) and its synthetic analog [K3]SHa. Human cathelicidin LL-37 and temporin-Tb (Tb), previously demonstrated to have anti-HSV-1 properties, were used as positive controls. We observed that SHa and [K3]SHa significantly inhibit HSV-1 replication in human primary keratinocytes when used at micromolar concentrations. This anti-viral activity was equivalent to that of Tb, but lower than that of LL-37. Transcriptomic analyses revealed that SHa did not act through the modulation of the cell innate immune response, but rather, displayed virucidal properties by reducing infectious titer of HSV-1 in suspension. In contrast, pre-incubation of the virus with LL-37 suggests that this peptide does not act directly on the viral particle at non-cytotoxic concentrations tested. The anti-HSV-1 activity of LL-37 appears to be due to the potentiation of cellular anti-viral defenses through the induction of interferon stimulated gene expression in infected primary keratinocytes. This study demonstrated that SHa and [K3]SHa, in addition to their previously reported antibacterial and antiparasitic activities, are direct-acting anti-HSV-1 peptides. Importantly, this study extends the little studied anti-viral attributes of frog temporins and offers perspectives for the development of new anti-HSV-1 therapies.
West Nile Virus (WNV) is a flavivirus involved in many human infections worldwide. This arthropod-borne virus is directly co-inoculated with mosquito saliva through the epidermis and the dermis during blood meal. WNV starts replicating in the skin before migrating to the draining lymph node, leading to widespread viremia and in some cases to neurological symptoms. Skin is a complex organ composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity. Keratinocytes, which represent 90% of the cells of the epidermis, are the organism's first line of defense, initiating innate immune response by recognizing pathogens through their pattern recognition receptors. Although WNV was previously known to replicate in human primary keratinocytes, the induced inflammatory response remains unknown. The aim of this study was first to characterize the inflammatory response of human primary keratinocytes to WNV infection and then, to assess the potential role of co-inoculated mosquito saliva on the keratinocyte immune response and viral replication. A type I and III interferon inflammatory response associated with an increase of IRF7 but not IRF3 mRNA expression, and dependent on infectious dose, was observed during keratinocyte infection with WNV. Expression of several interferon-stimulated gene mRNA was also increased at 24 h post-infection (p.i.); they included CXCL10 and interferon-induced proteins with tetratricopeptide repeats (IFIT)-2 sustained up until 48 h p.i. Moreover, WNV infection of keratinocyte resulted in a significant increase of pro-inflammatory cytokines (TNFα, IL-6) and various chemokines (CXCL1, CXCL2, CXCL8 and CCL20) expression. The addition of Aedes aegypti or Culex quinquefasciatus mosquito saliva, two vectors of WNV infection, to infected keratinocytes led to a decrease of inflammatory response at 24 h p.i. However, only Ae. Aegypti saliva adjunction induced modulation of viral replication. In conclusion, this work describes for the first time the inflammatory response of human primary keratinocytes to WNV infection and its modulation in presence of vector mosquito saliva. The effects of mosquito saliva assessed in this work could be involved in the early steps of WNV replication in skin promoting viral spread through the body.
Staphylococcus aureus is a skin commensal microorganism commonly colonizing healthy humans. Nevertheless, S. aureus can also be responsible for cutaneous infections and contribute to flare-up of inflammatory skin diseases such as atopic dermatitis (AD), which is characterized by dysbiosis of the skin microbiota with S. aureus as the predominant species. However, the role of major virulence factors of this pathogen such as phenol-soluble modulin (PSM) toxins in epidermal inflammation remains poorly understood. Stimulation of primary human keratinocytes with sublytic concentrations of synthetic and purified PSM α3 resulted in upregulation of a large panel of pro-inflammatory chemokine and cytokine gene expression, including CXCL1, CXCL2, CXCL3, CXCL5, CXCL8, CCL20, IL-1α, IL-1β, IL-6, IL-36γ and TNF-α, while inducing the release of CXCL8, CCL20, TNF-α and IL-6. In addition, using S. aureus culture supernatant from mutants deleted from genes encoding either α-type PSMs or all PSM production, PSMs were shown to be the main factors of S. aureus secretome responsible for pro-inflammatory mediator induction in human keratinocytes. On the other hand, α-type PSM-containing supernatant triggered an intense induction of pro-inflammatory mediator expression and secretion during both topical and basal layer stimulation of an ex vivo model of human skin explants, a physiologically relevant model of pluristratified epidermis. Taken together, the results of this study show that PSMs and more specifically α-type PSMs are major virulence factors of S. aureus inducing a potent inflammatory response during infection of the human epidermis and could thereby contribute to AD flare-up through exacerbation of skin inflammation.
Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary human keratinocyte infection. Both of them significantly reduced HSV-1 DNA replication and production of infectious viral particles in keratinocytes at noncytotoxic concentrations, with the stronger activity of Pb-CATH4. These peptides did not show direct virucidal activity and did not exhibit significant immunomodulatory properties, except for Pb-CATH4, which exerted a moderate proinflammatory action. All in all, our results suggest that Hg-CATH and Pb-CATH4 could be potent candidates for the development of new therapies against HSV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.