SUMMARY
Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.
SummaryMucociliary epithelia provide a first line of defense against pathogens in the airways and the epidermis of vertebrate larvae. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive and studies of Wnt signaling in mucociliary cells yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway basal stem cell cultures, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in mucociliary cells in vertebrates. Wnt signaling is required in multiciliated cells for cilia formation during differentiation stages, but in Basal cells, Wnt signaling prevents specification and differentiation of epithelial cell types by activating ΔN-TP63 expression. We demonstrate that ΔN-TP63 is a master transcription factor in Basal cells, which is necessary and sufficient to mediate the Wnt-induced inhibition of differentiation and is required to retain basal stem cells during development. Chronic stimulation of Wnt signaling leads to mucociliary remodeling and Basal cell hyperplasia, but this is reversible in vivo and in vitro, suggesting Wnt inhibition as an option in the treatment of chronic lung diseases. Our work sheds light into the evolutionarily conserved regulation of stem cells and differentiation, resolves Wnt functions in mucociliary epithelia, and provides crucial insights into mucociliary development, regeneration and disease mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.