Carcinoma of the bladder is one of the most common urologic malignancies occurring worldwide. Diagnosis and monitoring of bladder urothelial carcinoma (UC) are based on cystoscopy and urinary cytology. However, these diagnostic methods still have some limitations, mainly related to invasive nature and lack of sensitivity. New reliable and non-invasive biomarkers for bladder cancer detection are therefore required. To explore the involvement of enzymes of drug metabolism in bladder cancer, in the present study, we analyzed the gene expression profiles of tumor and normal looking tissues obtained from the same patient by cDNA macroarray. The enzyme nicotinamide N-methyltransferase (NNMT) was identified as a highly expressed gene in bladder cancer. RT-PCR, Real-Time PCR, Western blot analysis, and catalytic activity assay, performed on a large cohort of patients with bladder UC, confirmed NNMT upregulation. NNMT mRNA and protein levels were also determined in urine specimens obtained from patients with bladder UC and healthy subjects. We found that NNMT expression levels were significantly higher in patients with bladder tumor compared to controls that showed very low or undetectable amounts of NNMT transcript and protein. Our results indicate that a marked NNMT increase is a peculiar feature of bladder UC and suggest the potential suitability of urine NNMT expression levels determination for early and non-invasive diagnosis of bladder cancer.
Introduction: As a result of the growing evidence on tumor radical resection in literature, simple enucleation has become one of the best techniques associated to robotic surgery in the treatment of renal neoplasia, as it guarantees minimal invasiveness and the maximum sparing of renal tissue, facilitating the use of reduced or zero ischemia techniques during resection. The use of a robotic ultrasound probe represents a useful tool to detect and define tumor location, especially in poorly exophytic small renal mass. Materials and methods: A total of 22 robotic enucleations were performed on < 3 cm renal neoplasias (PADUA score 18 Pz 6/7 e 4 Pz 8) using a 12-5 MHz robotic ultrasound probe (BK Drop-In 8826). Results: Once kidney had been isolated from the adipose capsule at the site of the neoplasia (2), the exact position of the lesion could be easily identified in all cases (22/22), even for mostly endophytic lesions, thanks to the insertion of the ultrasound probe through the assistant port. Images were produced and visualized by the surgeon using the TilePro feature of the DaVinci surgical system for producing a picture-in-picture image on the console screen. The margins of resection were then marked with cautery, thus allowing for speedy anatomical dissection. This reduced the time of ischemia to 8 min (6-13) and facilitated the enucleation technique when performed without clamping the renal peduncle (6/22). No complications due to the use of the ultrasound probe were observed. Conclusions: The use of an intraoperative robotic ultrasound probe has allowed for easier identification of small, mostly endophytic neoplasias, better anatomical approach, shorter ischemic time, reduced risk of pseudocapsule rupture during dissection, and easier enucleation in cases performed without clamping. It is noteworthy that the use of intraoperative ultrasound probe allows mental reconstruction of the tumor through an accurate 3D vision of the hidden field during surgical dissection.KEY WORDS: Robotic ultrasound probe; Renal tumor; Simple enucleation; Psychomotor skills.
SummaryNo conflict of interest declared.
In the treatment of renal stones, PCNL may be a safe and effective choice; nevertheless, patients' anatomic abnormalities or staghorn-stones may influence the outcomes. Thus, a prospective study with a larger population is needed to verify our outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.