Moderate endurance exercise has long been considered an essential element to maintain cardiovascular health, and sedentary behaviour in the general population has been related to a significant increase in all-causes of mortality, cardiovascular disease mortality and cardiovascular disease incidence. However, a growing group of people performs an intense exercise that leads to multiple heart adaptive changes that are collectively called "athlete's heart". In this review, we discussed the evidence of cardiac remodelling process secondary to repetitive and strenuous exercise in some predisposed athletes that produces intense and probably deleterious changes in cardiac morphology and function with no clear clinical significance in long-term follow-up. Moreover, we also discussed the individual biological response to exercise assessed by myocardial damage, inflammation, oxidative stress, fibrosis and ventricular hypertrophy biomarkers showing different intensities with equivalent exertion.
In many vertebrates, the brain’s right hemisphere which is connected to the left visual field specializes in the processing of information about threats while the left hemisphere which is connected to the right visual field specializes in the processing of information about conspecifics. This is referred to as hemispheric lateralization. But individuals that are too predictable in their response to predators could have reduced survival and we may expect selection for somewhat unpredictable responses. We studied hemispheric lateralization in yellow-bellied marmots Marmota flaviventer, a social rodent that falls prey to a variety of terrestrial and aerial predators. We first asked if they have lateralized responses to a predatory threat. We then asked if the eye that they used to assess risk influenced their perceptions of risk. We recorded the direction marmots were initially looking and then walked toward them until they fled. We recorded the distance that they responded to our experimental approach by looking, the eye with which they looked at us, and the distance at which they fled (i.e., flight initiation distance; FID). We found that marmots had no eye preference with which they looked at an approaching threat. Furthermore, the population was not comprised of individuals that responded in consistent ways. However, we found that marmots that looked at the approaching person with their left eye had larger FIDs suggesting that risk assessment was influenced by the eye used to monitor the threat. These findings are consistent with selection to make prey less predictable for their predators, despite underlying lateralization.
Extreme climatic events may influence individual‐level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life‐history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life‐history strategy due to trade‐offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane (ρ=1.512; 95% CI: 1.488, 1.538), relative to ordinary years )(ρ=1.482;1.475,1.490. Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.
Extreme climatic events may influence individual-level variability in phenotypes, survival, and reproduction, and thereby drive the pace of evolution. Here, we quantify how experiencing major hurricanes influences individual life courses in the Cayo Santiago rhesus macaques. Our results show that major hurricanes increase heterogeneity in reproductive life courses despite an average reduction in mean fertility and survival, i.e. shortened life courses. In agreement with this, the population is expected to achieve stable population dynamics faster after a hurricane. Our work suggests that natural disasters force individuals into new niches to potentially reduce strong competition during poor environments where mean reproduction and survival are compromised. We also demonstrate that variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.
Differing selection pressures on stationary nest contents compared to mobile offspring mean that the nest-site characteristics resulting in the highest nest success may not be the same characteristics that result in the highest survival of juveniles from those nests. In such cases, maternal nest-site choice may optimize productivity overall by selecting nest sites that balance opposing pressures on nest success and juvenile survival, rather than maximizing survival of either the egg or the juvenile stage. Determining which macro- and microhabitat characteristics best predict overall productivity is critical for ensuring that land management activities increase overall recruitment into a population of interest, rather than benefiting one life stage at the inadvertent expense of another. We characterized nest-site choice at the macro- and microhabitat scale, and then quantified nest success and juvenile survival to overwintering in two declining turtle species, eastern box turtles and spotted turtles, that co-occur in oak savanna landscapes of northwestern Ohio and southern Michigan. Nest success in box turtles was higher in nests farther from macrohabitat edges, constructed later in the year, and at greater total depths. In contrast, survival of juvenile box turtles to overwintering was greater from nests under less shade cover and at shallower total depths. Spotted turtle nest success and juvenile survival were so high that we were unable to detect relationships between nest-site characteristics and the small amount of variation in survival. Our results demonstrate, at least for eastern box turtles, a tradeoff in nest depth between favoring nest success vs. juvenile survival to overwintering. We suggest that heterogeneity in microhabitat structure within nesting areas is important for allowing female turtles to both exercise flexibility in nest-site choice to match nest-site characteristics to prevailing weather conditions, and to place nests in close proximity to habitat that will subsequently be used by hatchlings for overwintering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.