This study determined whether susceptibility to opening of the permeability transition pore (PTP) varies according to muscle phenotype represented by the slow oxidative soleus (Sol) and superficial white gastrocnemius (WG). Threshold for Ca2+-induced mitochondrial Ca2+ release following PTP opening was determined with a novel approach using permeabilized ghost myofibers. Threshold values for PTP opening were approximately threefold higher in fibers from WG compared with those from Sol (124+/-47 vs. 30.4+/-6.8 pmol Ca2+/mU citrate synthase). A similar phenomenon was also observed in isolated mitochondria (threshold: 121+/-60 vs. 40+/-10 nmol Ca2+/mg protein in WG and Sol), indicating that this was linked to differences in mitochondrial factors between the two muscles. The resistance of WG fibers to PTP opening was not related to the expression of putative protein modulators (cyclophilin D, adenylate nucleotide translocator-1, and voltage-dependent anion channels) or to difference in respiratory properties and occurred despite the fact that production of reactive oxygen species, which promote pore opening, was higher than in the Sol. However, endogenous matrix Ca2+ measured in mitochondria isolated under resting baseline conditions was approximately twofold lower in the WG than in the Sol (56+/-4 vs. 111+/-11 nmol/mg protein), which significantly accounted for the resistance of WG. Together, these results reveal fiber type differences in the sensitivity to Ca2+-induced PTP opening, which may constitute a physiological mechanism to adapt mitochondria to the differences in Ca2+ dynamics between fiber types.
Loss of neural input to skeletal muscle fibres induces atrophy and degeneration with evidence of mitochondria-mediated cell death. However, the effect of denervation on the permeability transition pore (PTP), a mitochondrial protein complex implicated in cell death, is uncertain. In the present study, the impact of 21 days of denervation on the sensitivity of the PTP to Ca 2+ -induced opening was studied in isolated muscle mitochondria. Muscle denervation increased the sensitivity to Ca 2+ -induced opening of the PTP, as indicated by a significant decrease in calcium retention capacity (CRC: 111 ± 12 versus 475 ± 33 nmol (mg protein) -1 for denervated and sham, respectively). This phenomenon was partly attributable to in vivo mitochondrial and whole muscle Ca 2+ overload. Cyclosporin A, which inhibits PTP opening by binding to cyclophilin D (CypD), was significantly more potent in mitochondria from denervated muscle and restored CRC to the level observed in mitochondria from sham-operated muscles. In contrast, the CypD independent inhibitor trifluoperazine was equally effective at inhibiting PTP opening in sham and denervated animals and did not correct the difference in CRC between groups. This phenomenon was associated with a significant increase in the content of the PTP regulating protein CypD relative to several mitochondrial marker proteins. Together, these results indicate that Ca 2+ overload in vivo and an altered expression of CypD could predispose mitochondria to permeability transition in denervated muscles.
Susceptibility of cardiomyocytes to stress-induced damage has been implicated in the development of cardiomyopathy in Duchenne muscular dystrophy, a disease caused by the lack of the cytoskeletal protein dystrophin in which heart failure is frequent. However, the factors underlying the disease progression are unclear and treatments are limited. Here, we tested the hypothesis of a greater susceptibility to the opening of the mitochondrial permeability transition pore (PTP) in hearts from young dystrophic (mdx) mice (before the development of overt cardiomyopathy) when subjected to a stress protocol and determined whether the prevention of a PTP opening is involved in the cardioprotective effect of sildenafil, which we have previously reported in mdx mice. Using the 2-deoxy-[(3)H]glucose method to quantify the PTP opening in ex vivo perfused hearts, we demonstrate that when compared with those of controls, the hearts from young mdx mice subjected to ischemia-reperfusion (I/R) display an excessive PTP opening as well as enhanced activation of cell death signaling, mitochondrial oxidative stress, cardiomyocyte damage, and poorer recovery of contractile function. Functional analyses in permeabilized cardiac fibers from nonischemic hearts revealed that in vitro mitochondria from mdx hearts display normal respiratory function and reactive oxygen species handling, but enhanced Ca(2+) uptake velocity and premature opening of the PTP, which may predispose to I/R-induced injury. The administration of a single dose of sildenafil to mdx mice before I/R prevented excessive PTP opening and its downstream consequences and reduced tissue Ca(2+) levels. Furthermore, mitochondrial Ca(2+) uptake velocity was reduced following sildenafil treatment. In conclusion, beyond our documentation that an increased susceptibility to the opening of the mitochondrial PTP in the mdx heart occurs well before clinical signs of overt cardiomyopathy, our results demonstrate that sildenafil, which is already administered in other pediatric populations and is reported safe and well tolerated, provides efficient protection against this deleterious event, likely by reducing cellular Ca(2+) loading and mitochondrial Ca(2+) uptake.
While compelling evidence supports the central role of mitochondrial dysfunction in the pathogenesis of heart failure, there is comparatively less information available on mitochondrial alterations that occur prior to failure. Building on our recent work with the dystrophin-deficient mdx mouse heart, this review focuses on how early changes in mitochondrial functional phenotype occur prior to overt cardiomyopathy and may be a determinant for the development of adverse cardiac remodelling leading to failure. These include alterations in energy substrate utilization and signalling of cell death through increased permeability of mitochondrial membranes, which may result from abnormal calcium handling, and production of reactive oxygen species. Furthermore, we will discuss evidence supporting the notion that these alterations in the dystrophin-deficient heart may represent an early "subclinical" signature of a defective nitric oxide/cGMP signalling pathway, as well as the potential benefit of mitochondria-targeted therapies. While the mdx mouse is an animal model of Duchenne muscular dystrophy (DMD), changes in the structural integrity of dystrophin, the mutated cytoskeletal protein responsible for DMD, have also recently been implicated as a common mechanism for contractile dysfunction in heart failure. In fact, altogether our findings support a critical role for dystrophin in maintaining optimal coupling between metabolism and contraction in the heart.
The purpose of this study was to determine whether regular exercise (treadmill running, 10 wk) alters the susceptibility of rat isolated heart mitochondria to Ca(2+)-induced permeability transition pore (PTP) opening and whether this could be associated with changes in the modulation of PTP opening by selected physiological effectors. Basal leak-driven and ADP-stimulated respiration in the presence of substrates for complex I, II, and IV were not affected by training. Fluorimetric studies revealed that in the control and exercise-trained groups, the amount of Ca(2+) required to trigger PTP opening was greater in the presence of complex II vs. I substrates (230 +/- 12 vs. 134 +/- 7 nmol Ca(2+)/mg protein, P < 0.01; pooled average of control and trained groups). In addition, with a substrate feeding the complex II, training increased by 45% (P < 0.01) the amount of Ca(2+) required to trigger PTP opening both in the presence and absence of the PTP inhibitor cyclosporin A. However, membrane potential, reactive oxygen species production, NAD(P)H ratio, and Ca(2+) uptake kinetics were not different in mitochondria from both groups. Together, these results suggest the existence of a substrate-specific regulation of the PTP in heart mitochondria and suggest that regular exercise results in a reduced sensitivity to Ca(2+)-induced PTP opening in presence of complex II substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.