Arabidopsis flower primordia give rise to organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular means by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT and AIL6 binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT and/or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include class B and C floral homeotic genes, growth regulatory genes, and genes involved in vascular development.
Arabidopsis flower primordia give rise to floral organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) play critical and partially overlapping roles during floral organogenesis. They are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular means by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT and AIL6 binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include the floral homeotic genes APETALA3 (AP3) and AGAMOUS (AG) and four growth regulatory genes: BIG BROTHER (BB), ROTUNDIFOLIA3 (ROT3), ANGUSTIFOLIA3/GRF INTERACTING FACTOR (AN3/GIF1), and XYLOGLUCAN ENDOTRANSGLUCOLSYLASE/HYDROLASE9 (XTH9).One Sentence SummaryThe transcription factors ANT and AIL6 directly regulate genes involved in different aspects of flower development including genes that specify floral organ identity and those that regulate growth.
Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.
SummaryEnhancers direct precise gene expression patterns during development and harbor the majority of variants associated with disease. We find that suboptimal affinity ETS transcription factor binding sites are prevalent within Ciona and human developmental heart enhancers. Here we demonstrate in two diverse systems, Ciona intestinalis and human iPSC-derived cardiomyocytes (iPSC-CMs), that single nucleotide changes can optimize the affinity of ETS binding sites, leading to gain-of-function gene expression associated with heart phenotypes. In Ciona, ETS affinity-optimizing SNVs lead to ectopic expression and phenotypic changes including two beating hearts. In human iPSC-CMs, an affinity-optimizing SNV associated with QRS duration occurs within an SCN5A enhancer and leads to increased enhancer activity. Our mechanistic approach provides a much-needed systematic framework that works across different enhancers, cell types and species to pinpoint causal enhancer variants contributing to enhanceropathies, phenotypic diversity and evolutionary changes.In BriefThe prevalent use of low-affinity ETS sites within developmental heart enhancers creates vulnerability within genomes whereby single nucleotide changes can dramatically increase binding affinity, causing gain-of-function enhancer activity that impacts heart development.HighlightsETS affinity-optimizing SNVs can lead to migration defects and a multi-chambered heart.An ETS affinity-optimizing human SNV within an SCN5A enhancer increases expression and is associated with QRS duration.Searching for ETS affinity-optimizing variants is a systematic and generalizable approach to pinpoint causal enhancer variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.