Complex and interacting selective pressures can produce bacterial communities with a range of phenotypes. One measure of bacterial success is the ability of cells or populations to proliferate while avoiding lytic phage infection. Resistance against bacteriophage infection can occur in the form of a metabolically expensive exopolysaccharide capsule. Here, we show that in Caulobacter crescentus, presence of an exopolysaccharide capsule provides measurable protection against infection from a lytic paracrystalline S-layer bacteriophage (CR30), but at a metabolic cost that reduces success in a phage-free environment. Carbon flux through GDP-mannose 4,6 dehydratase in different catabolic and anabolic pathways appears to mediate this trade-off. Together, our data support a model in which diversity in bacterial communities may be maintained through variable selection on phenotypes utilizing the same metabolic pathway.
The use of antibiotics to treat dairy calves may result in multidrug-resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This study investigated fluoroquinolone and macrolide resistance genes among ESBL-producing E. coli isolated from dairy calves. Fresh fecal samples from 147 dairy calves across three age groups were enriched to select for ESBL-producing E. coli. Plasmid-mediated fluoroquinolone (qnrB), macrolide (mph(A)), and beta-lactam (blaCTX-M groups 1 and 9) resistance genes were identified by PCR and gel electrophoresis in ESBL-producing E. coli. Beta-lactamase variants and antibiotic resistance genes were characterized for eight isolates by whole-genome sequencing. Seventy-one (48.3%) samples were positive for ESBL-producing E. coli, with 159 (70.4%) isolates identified as blaCTX-M variant group 1 and 67 (29.6%) isolates as blaCTX-M variant group 9. Resistance gene mph(A) was more commonly associated with blaCTX-M variant group 1, while resistance gene qnrB was more commonly associated with variant group 9. E. coli growth was quantified on antibiotic media for 30 samples: 10 from each age group. Significantly higher quantities of ceftriaxone-resistant E. coli were present in the youngest calves. Results indicate the dominant blaCTX-M groups present in ESBL-producing E. coli may be associated with additional qnrB or mph(A) resistance genes and ESBL-producing E. coli is found in higher abundance in younger calves.
Copper (Cu) is a key transition metal that is involved in many important biological processes in a cell. Cu is also utilized by the immune system to hamper pathogen growth during infection. However, genome-level knowledge on the mechanisms involved in adaptation to Cu stress is limited. Here, we report the results of a genome-wide reverse genetic screen for Cu-responsive phenotypes in Escherichia coli. Our screen has identified novel genes involved in adaptation to Cu stress in E. coli. We detected multiple genes involved in the biosynthesis and uptake of enterobactin, a siderophore utilized for high-affinity TonB-dependent acquisition of iron (Fe), as critical players in survival under Cu intoxication. We demonstrated the specificity of Cu-dependent killing by chelation of Cu and by genetic complementation of tonB. Notably, TonB is involved in protection from Cu in both laboratory and uropathogenic strains of E. coli. Cu stress leads to increased expression of the genes involved in Fe uptake, indicating that Fur regulon is derepressed during exposure to excess Cu. Trace element analyses revealed that Fe homeostasis is dysregulated during Cu stress. Taken together, our data supports a model in which lack of enterobactin-dependent Fe uptake leads to exacerbation of Cu toxicity, and elucidates the intricate connection between the homeostasis of Cu and Fe in a bacterial cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.