Saccadic adaptation ($SA$) is a cerebellar-dependent learning of motor commands ($MC$), which aims at preserving saccade accuracy. Since $SA$ alters visual localization during fixation and even more so across saccades, it could also involve changes of target and/or saccade visuospatial representations, the latter ($CDv$) resulting from a motor-to-visual transformation (forward dynamics model) of the corollary discharge of the $MC$. In the present study, we investigated if, in addition to its established role in adaptive adjustment of $MC$, the cerebellum could contribute to the adaptation-associated perceptual changes. Transfer of backward and forward adaptation to spatial perceptual performance (during ocular fixation and trans-saccadically) was assessed in eight cerebellar patients and eight healthy volunteers. In healthy participants, both types of $SA$ altered $MC$ as well as internal representations of the saccade target and of the saccadic eye displacement. In patients, adaptation-related adjustments of $MC$ and adaptation transfer to localization were strongly reduced relative to healthy participants, unraveling abnormal adaptation-related changes of target and $CDv$. Importantly, the estimated changes of $CDv$ were totally abolished following forward session but mainly preserved in backward session, suggesting that an internal model ensuring trans-saccadic localization could be located in the adaptation-related cerebellar networks or in downstream networks, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.