We report the spontaneous and rapid growth of micrometre-scale tubes from crystals of a metal oxide-based inorganic solid when they are immersed in an aqueous solution containing a low concentration of an organic cation. A membrane immediately forms around the crystal, and this membrane then forms micrometre-scale tubes that grow with vast aspect ratios at controllable rates along the surface on which the crystal is placed. The tubes are composed of an amorphous mixture of polyoxometalate-based anions and organic cations. It is possible for liquid to flow through the tubes, and for the direction of growth and the overall tube diameter to be controlled. We demonstrate that tube growth is driven by osmotic pressure within the membrane sack around the crystal, which ruptures to release the pressure. These robust, self-growing, micrometre-scale tubes offer opportunities in many areas, including the growth of microfluidic devices and the self-assembly of metal oxide-based semipermeable membranes for diverse applications.
A new class of phenanthridinium derivative has been isolated from the reaction of 2-bromoethyl-phenanthridinium bromide with a range of primary amines in excellent yields. The reaction pathway is unprecedented and proceeds via three cascade steps: nucleophilic attack of a primary amine on the iminium moiety of a heteroaromatic ring system and cyclization to form a five-membered ring, followed by hydride loss to yield a rearomatized dihydro-1H-imidazo[1,2-f]phenanthridinium derivative. A range of NMR phase transfer experiments were carried out to elucidate the mechanistic pathway, and the methodology has been further developed by means of a biphasic system using N-bromosuccinimide as a co-oxidizing agent. The method has also been extended to other N-heterocyclic cation derivatives such as quinolinium and quinazolinium.
Caged up: A family of isopolyoxotungstate clusters of the form [H4W19O62]6− with a cluster cage (blue) identical to that of the Dawson‐type heteropolyacids (red) has been discovered. These comprise a single trigonal‐prismatic or octahedral {WO6}6− moiety in place of the two heteroanions found in the Dawson structure.
In this paper we describe Zeneth, a new expert computational system for the prediction of forced degradation pathways of organic compounds. Intermolecular reactions such as dimerization, reactions between the query compound and its degradants, as well as interactions with excipients can be predicted. The program employs a knowledge base of patterns and reasoning rules to suggest the most likely transformations under various environmental conditions relevant to the pharmaceutical industry. Building the knowledge base is facilitated by data sharing between the users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.