Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized in vitro by a spontaneous tonic regular activity (pacemaking activity), a broad action potential and a biphasic post-inhibitory response. The transient A-type current (I A ) is known to play a crucial role in this electrical phenotype, and so far this current was considered to be carried exclusively by Kv4.3 potassium channels. Using Kv4.3 -/transgenic mice, we demonstrate that the constitutive loss of this channel is associated with increased exploratory behavior and impaired motor learning at the behavioral level. Consistently it is also associated with a lack of compensatory changes in other ion currents at the cellular level. Using antigen retrieval immunohistochemistry, we then demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, even though their contribution to I A appears significant only in a minority of neurons (~5-10%). Using correlative analysis on recorded electrophysiological parameters and multi-compartment modeling, we then demonstrate that, rather than its conductance level, I A gating kinetics (inactivation time constant) appear as the main biophysical property defining post-inhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (I H ) has an opposing and complementary influence on the same firing features. SIGNIFICANCE STATEMENTSubstantia nigra pars compacta (SNc) dopaminergic (DA) neurons are characterized by pacemaking activity, a broad action potential and biphasic post-inhibitory response. The A-type transient potassium current (I A ) plays a central role in this electrical phenotype. While it was thought so far that Kv4.3 ion channels were fully responsible for I A , using a Kv4.3 -/transgenic mouse and antigen retrieval immunohistochemistry we demonstrate that Kv4.2 channels are also expressed in SNc DA neurons, although their contribution is significant in a minority of neurons only. Using electrophysiological recordings and computational modeling, we then demonstrate that I A gating kinetics and its functional complementarity with the hyperpolarization-activated current are major determinants of both pacemaking activity and post-inhibitory response in SNc DA neurons.
Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized in vitro by a spontaneous tonic regular activity (pacemaking activity), a broad action potential and a biphasic post-inhibitory response. Several studies in rodents have underlined the central role played by the transient A-type current (IA) in the control of pacemaking activity and post-inhibitory rebound properties, thereby influencing both DA release and the physiological response of SNc neurons to incoming inhibitory inputs. Kv4.3 potassium channels were considered to be fully responsible for IA in these neurons, their density being tightly related to pacemaking frequency. In spite of this crucial electrophysiological role, we show that Kv4.3-/- transgenic mice exhibit minor alterations in locomotion and motor learning, although no compensation by functionally overlapping ion channels is observed in Kv4.3-/- SNc DA neurons. Using antigen retrieval immunohistochemistry, we further demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, even though their contribution to IA appears significant only in a minority of neurons (~5-10%). Using correlative analysis on recorded electrophysiological parameters and multi-compartment modeling, we then demonstrate that, rather than its conductance level, IA gating kinetics (inactivation time constant) appear as the main biophysical property defining post-inhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (IH) has an opposing and complementary influence on the same firing features, and that the biophysical properties of IA and IH are likely coregulated in mouse SNc DA neurons.SIGNIFICANCE STATEMENTSubstantia nigra pars compacta (SNc) dopaminergic (DA) neurons are characterized by pacemaking activity, a broad action potential and biphasic post-inhibitory response. The A-type transient potassium current (IA) plays a central role in both pacemaking activity and post-inhibitory response. While it was thought so far that Kv4.3 ion channels were fully responsible for IA, using a Kv4.3-/- transgenic mouse and antigen retrieval immunohistochemistry we demonstrate that Kv4.2 channels are also expressed in SNc DA neurons, although their contribution is significant in a minority of neurons only. Using electrophysiological recordings and computational modeling, we then demonstrate that IA gating kinetics and its functional complementarity with the hyperpolarization-activated current are major determinants of both pacemaking activity and post-inhibitory response in SNc DA neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.