In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool to examine host-pathogen interactions and screen drugs. With the development of more complex in vitro models, there is a need for tools to help analyze and integrate data from these models. We introduce an agent-based model (ABM) representation of the interactions between immune cells and bacteria in an in vitro setting. This in silico model was used to independently simulate both traditional and spheroid cell culture models by changing the movement rules and initial spatial layout of the cells. These two setups were calibrated to published experimental data in a paired manner, by using the same parameters in both simulations. Within the calibrated set, heterogeneous outputs are seen for outputs of interest including bacterial count and T cell infiltration into the macrophage core of the spheroid. The simulations are also able to predict many outputs with high time resolution, including spatial structure. The structure of a single spheroid can be followed across the time course of the simulation, allowing the relationship between cell localization and immune activation to be explored. Uncertainty analyses are performed for both model setups using latin hypercube sampling and partial rank correlation coefficients to allow for easier comparison, which can provide insight into ideal use cases for the independent setups. Future model iterations can be guided by the limitations of the current model, specifically which parts of the output space were harder to reach. This ABM can be used to represent more in vitro Mtb infection models due to its flexible structure, providing a powerful analysis tool that can be used in tandem with experiments.
The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.