Abstract:The intensity of precipitation is expected to increase in response to climate change, but the regions where this may occur are unclear. The lack of certainty from climate models warrants an examination of trends in observational records. However, the temporal resolution of records may affect the success of trend detection. Daily observations are often used, but may be too coarse to detect changes. Sub-daily records may improve detection, but their value is not yet quantified. Using daily and hourly records from 24 rain gages in Portland, Oregon (OR), trends in precipitation intensity and volume are examined for the period of 1999-2015. Daily intensity is measured using the Simple Daily Intensity Index, and this method is adapted to measure hourly scale intensity. Kendall's tau, a non-parametric correlation coefficient, is used for monotonic trend detection. Field significance and tests for spatial autocorrelation using Moran's Index are used to determine the significance of group hypothesis tests. Results indicate that the hourly data is superior in trend detection when compared with daily data; more trends are detected with hourly scale data at both the 5% and 10% significance levels. Hourly records showed a significant increase in 6 of 12 months, while daily records showed a significant increase in 4 of 12 months at the 10% significance level. At both scales increasing trends were concentrated in spring and summer months, while no winter trends were detected. Volume was shown to be increasing in most months experiencing increased intensity, and is a probable driver of the intensity trends observed.
This study addresses how regional changes to precipitation may be identified by exploring the effect of temporal resolution on trend detection. Climate indices that summarize precipitation characteristics are used with Mann–Kendall monotonic testing to investigate precipitation trends in Portland, Oregon (OR) from 1977 to 2016. Observational records from rain gages are compared with downscaled global climate models to determine trends for the historic (1977–2005) and future (2006–2100) periods. Standard indices created by the Expert Team on Climate Change Detection and Indices (ETCCDI) are deployed. ETCCDI indices that summarize conditions at the annual level are generated alongside a limited number of ETCCDI indices summarized at the monthly level. For the future climate, the indices summarized at the annual level demonstrate trends indicative of an intensifying hydrologic cycle. The historical record depicted by annual indices does not show trends. The historical record is viewed differently by changing the indices to monthly summaries, which causes trend detection to increase and hallmark indicators of an intensifying hydrologic cycle to become apparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.