A nickel-catalyzed reductive cross-coupling of cyclopropylamine NHP esters with (hetero)aryl halides is reported. This efficient protocol provides direct access to 1-arylcyclopropylamines, a bioisosteric motif commonly used in small molecule drug discovery. The reaction proceeds rapidly (<2 h) with excellent functional group tolerance and without requiring heat-or airsensitive reagents. The method can also be extended to the arylation of four-membered strained rings. The NHP esters are easily obtained from the corresponding commercially available carboxylic acids in one step with high yields and no column chromatography.
The transition-metal-catalyzed α-arylation
of secondary amides
remains a synthetic challenge due to the presence of a free N–H
bond. We report a strategy to synthesize secondary α-aryl amides
via a Ni-catalyzed reductive arylation of redox-active N-hydroxyphthalimide (NHP) esters of malonic acid half amides. This
transformation proceeds under mild conditions and displays excellent
chemoselectivity for amide α-arylation in the presence of other
enolizable carbonyls. The NHP ester substrates are readily prepared
from Meldrum’s acid.
The enantioselective generation of quaternary carbon centers remains challenging but is of growing importance for the preparation of functional molecules. Metal catalyzed allylic alkylations of tertiary electrophiles can provide access to these substructures but remain generally incompatible with organometallic benzyl nucleophiles. Here we demonstrate that electron-deficient arylacetates can serve as benzyl nucleophile surrogates to generate enantioenriched acyclic molecules containing a quaternary carbon center via a two-step substitution-decarboxylation process using isoprene monoxide. Products are often obtained in > 90 % ee using a commercially available catalyst. An array of electron-withdrawing functional groups on the arylacetate moiety are tolerated. The lactone generated by the initial substitution reaction can be used in further stereoselective transformations to prepare molecules with acyclic vicinal quaternary stereocenters.
A nickel-catalyzed reductive cross-coupling of cyclopropylamine NHP esters with (hetero)aryl halides is reported. This efficient protocol provides direct access to 1-arylcyclopropylamines, a bioisosteric motif commonly used in small molecule drug discovery. The reaction proceeds rapidly (<2 h) with excellent functional group tolerance and without requiring heat or air-sensitive reagents. The method can also be extended to the arylation of other strained rings. The NHP esters are easily obtained from the corresponding commercially available carboxylic acids in one step with high yields and no column chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.