Objective To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition. Design A mechanistic study employing a non-human primate (NHP) model. Setting Magee-Womens Research Institute at the University of Pittsburgh. Population Parous rhesus macaques, with similar age, weight, parity and POP-Q scores. Methods Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls. Main Outcome Measures The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly. Results Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01). Conclusion Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration.
BACKGROUND Despite good anatomic and functional outcomes, urogynecologic polypropylene meshes that are used to treat pelvic organ prolapse and stress urinary incontinence are associated with significant complications, most commonly mesh exposure and pain. Few studies have been performed that specifically focus on the host response to urogynecologic meshes. The macrophage has long been known to be the key cell type that mediates the foreign body response. Conceptually, macrophages that respond to a foreign body can be dichotomized broadly into M1 proinflammatory and M2 proremodeling subtypes. A prolonged M1 response is thought to result in chronic inflammation and the formation of foreign body giant cells with potential for ongoing tissue damage and destruction. Although a limited M2 predominant response is favorable for tissue integration and ingrowth, excessive M2 activity can lead to accelerated fibrillar matrix deposition and result in fibrosis and encapsulation of the mesh. OBJECTIVE The purpose of this study was to define and compare the macrophage response in patients who undergo mesh excision surgery for the indication of pain vs a mesh exposure. STUDY DESIGN Patients who were scheduled to undergo a surgical excision of mesh for pain or exposure at Magee-Womens Hospital were offered enrollment. Twenty-seven mesh-vagina complexes that were removed for the primary complaint of a mesh exposure (n = 15) vs pain in the absence of an exposure (n = 12) were compared with 30 full-thickness vaginal biopsy specimens from women who underwent benign gynecologic surgery without mesh. Macrophage M1 proinflammatory vs M2 proremodeling phenotypes were examined via immunofluorescent labeling for cell surface markers CD86 (M1) vs CD206 (M2) and M1 vs M2 cytokines via enzyme-linked immunosorbent assay. The amount of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) proteolytic enzymes were quantified by zymography and substrate degradation assays, as an indication of tissue matrix degradation. Statistics were performed with the use of 1-way analysis of variance with appropriate post hoc tests, t-tests, and Fisher’s Exact test. RESULTS Twenty-seven mesh-vaginal tissue complexes were excised from 27 different women with mesh complications: 15 incontinence mid urethral slings and 12 prolapse meshes. On histologic examination, macrophages surrounded each mesh fiber in both groups, with predominance of the M1 subtype. M1 and M2 cytokines/chemokines, MMP-9 (pro- and active), and MMP-2 (active) were increased significantly in mesh-vagina explants, as compared with vagina without mesh. Mesh explants that were removed for exposure had 88.4% higher pro-MMP-9 (P = .035) than those removed for pain. A positive correlation was observed between the profibrotic cytokine interleukin-10 and the percentage of M2 cells (r = 0.697; P = .037) in the pain group. CONCLUSION In women with complications, mesh induces a proinflammatory response that persists years after implantation. The increase in MMP-9 in mesh exp...
Objective To determine the predominant cell type (macrophage, T-lymphocyte, B-lymphocyte, mast cell) within the area of implantation of the prototypical polypropylene mesh, Gynemesh PS (Ethicon); and to determine the phenotypic profile (M1 pro-inflammatory, M2 anti-inflammatory) of the macrophage response to three different polypropylene meshes: Gynemesh PS (Ethicon), and two lower weight, higher porosity meshes, UltraPro (Ethicon) and Restorelle (Coloplast). Study Design Sacrocolpopexy was performed following hysterectomy in rhesus macaques. Sham-operated animals served as controls. At 12 weeks post-surgery, the vagina-mesh complex was excised and the host inflammatory response was evaluated. Hematoxylin and eosin was used to perform routine histomorphologic evaluation. Identification of leukocyte (CD45+) subsets was performed by immunolabeling for CD68 (macrophage), CD3 (T-lymphocyte), CD20 (B-lymphocyte), and CD117 (mast cell). M1 and M2 macrophage subsets were identified using immunolabeling (CD86+ and CD206+, respectively), and further evaluation was performed using ELISA for two M1 (TNF-α and IL-12) and two M2 (IL-4 and IL-10) cytokines. Results Histomorphologic evaluation showed a dense cellular response surrounding each mesh fiber. CD45+ leukocytes accounted for 21.4±5.4% of total cells within the peri-mesh area captured in a 20× field, with macrophages as the predominant luekocyte subset (10.5±3.9% of total cells) followed by T-lymphocytes (7.3±1.7%), B-lymphocytes (3.0±1.2%), and mast cells (0.2±0.2%). The response was observed to be more diffuse with increasing distance from the fiber surface. Few leukocytes of any type were observed in sham-operated animals. Immunolabeling revealed polarization of the macrophage response towards the M1 phenotype in all mesh groups. However, the ratio of M2:M1 macrophages was increased in the fiber area in UltraPro (P=0.033) and Restorelle (P=0.016) compared to Gynemesh PS. In addition, a shift towards increased expression of the anti-inflammatory cytokine IL-10 was observed in Restorelle as compared to Gynemesh PS (P=0.011). Conclusions The host response to mesh consists predominantly of activated, pro-inflammatory, M1 macrophages at 12 weeks post-surgery. However, this response is attenuated with implantation of lighter weight, higher porosity mesh. While additional work is required to establish causal relationships, these results suggest a link between the host inflammatory response, mesh textile properties, and clinical outcomes in the repair of pelvic organ prolapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.