Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.DOI:
http://dx.doi.org/10.7554/eLife.07519.001
The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs.
Summary
Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11β2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.