Cyber-physical systems come with increasingly complex architectures and failure modes, which complicates the task of obtaining accurate system reliability models. At the same time, with the emergence of the (industrial) Internet-of-Things, systems are more and more often being monitored via advanced sensor systems. These sensors produce large amounts of data about the components' failure behaviour, and can, therefore, be fruitfully exploited to learn reliability models automatically. This paper presents an effective algorithm for learning a prominent class of reliability models, namely fault trees, from observational data. Our algorithm is evolutionary in nature; i.e., is an iterative, population-based, randomized search method among fault-tree structures that are increasingly more consistent with the observational data. We have evaluated our method on a large number of case studies, both on synthetic data, and industrial data. Our experiments show that our algorithm outperforms other methods and provides near-optimal results.
A classical problem in grammatical inference is to identify a deterministic finite automaton (DFA) from a set of positive and negative examples. In this paper, we address the related -yet seemingly novel -problem of identifying a set of DFAs from examples that belong to different unknown simple regular languages. We propose two methods based on compression for clustering the observed positive examples. We apply our methods to a set of print jobs submitted to large industrial printers.
In this paper, we propose a method to infer temporal logic behaviour models of an a priori unknown system. We use the formalism of Signal Temporal Logic (STL), which can express various robot motion planning and control specifications, including spatial preferences. In our setting, data is collected through a series of queries the learning algorithm poses to the system under test. This active learning approach incrementally builds a hypothesis solution which, over time, converges to the actual behaviour of the system. Active learning presents several benefits compared to supervised learning: in the case of costly prior labelling of data, and if the system to test is accessible, the learning algorithm can interact with the system to refine its guess of the specification of the system. Inspired by mobile robot navigation tasks, we present experimental case studies to ensure the relevance of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.