Marine life of the Southern Ocean has been facing environmental changes and the direct impact of human activities during the past decades. Benthic communities have particularly been affected by such changes although we only slowly understand the effect of environmental changes on species physiology, biogeography, and distribution. Species distribution models (SDM) can help explore species geographic responses to main environmental changes. In this work, we modeled the distribution of four echinoid species with contrasting ecological niches. Models developed for [2005–2012] were projected to different time periods, and the magnitude of distribution range shifts was assessed for recent‐past conditions [1955–1974] and for the future, under scenario RCP 8.5 for [2050–2099]. Our results suggest that species distribution shifts are expected to be more important in a near future compared to the past. The geographic response of species may vary between poleward shift, latitudinal reduction, and local extinction. Species with broad ecological niches and not limited by biogeographic barriers would be the least affected by environmental changes, in contrast to endemic species, restricted to coastal areas, which are predicted to be more sensitive.
direct human pressure (i.e. economic activities including tourism) on natural habitats (Gutt et al. 2012), defining conservation priorities (Vierod et al. 2014, Greathead et al. 2015) and de veloping relevant management plans (Reiss et al. 2015, Koubbi et al. 2016). SDMs allow scientists to interpolate the known distribution of single species, assemblages or communities
The present dataset provides a case study for (SDM)species distribution modelling and for model testing in a poorly documented marine region.The dataset includes spatially-explicit data for echinoid (Echinodermata: Echinoidea) distribution. Echinoids were collected during oceanographic campaigns led around the Kerguelen Plateau (+63°/+81°E; -46°/-56°S) since 1872. In addition to the identification of collection specimens from historical cruises, original data from the recent campaigns POKER II (2010) and PROTEKER 2 to 4 (2013-2015) are also provided. In total, five families, ten genera, and 12 echinoid species are recorded in the region of the Kerguelen Plateau.The dataset is complemented with environmental descriptors available and relevant for echinoid ecology and SDM. The environmental data was compiled from different sources and was modified to suit the geographic extent of the Kerguelen Plateau, using scripts developed with the R language (R Core Team 2015). Spatial resolution was set at a common 0.1° pixel resolution. Mean seafloor and sea surface temperatures, salinity and their amplitudes, all derived from the World Ocean Database (Boyer et al. 2013) are made available for the six following decades: 1955–1964, 1965–1974, 1975–1984, 1985–1994, 1995–2004, 2005–2012.Future projections are provided for several parameters: they were modified from the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4th report).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.