Phenmedipham metabolism in leaf tissue of sugarbeet (tolerant) and rapeseed (sensitive) was compared. Sugarbeet leaf discs metabolized phenmedipham much more rapidly than rapeseed leaf discs, forming two metabolites of relatively low polarity. The less polar of these (metabolite 21) was a precursor to the other (metabolite 11), and its properties indicate derivation from phenmedipham by a single hydroxylation and monoglycosylation. Synthetic N-hydroxyphenmedipham was converted by both species into a compound that cochromatographs with metabolite 21. Purified metabolite 21 was much less inhibitory to light-driven oxygen evolution by isolated thylakoids of both species than was phenmedipham. Hydroxylation/glycosylation without prior carbamate hydrolysis appears to be a major factor in the tolerance of sugarbeet to phenmedipham.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.