Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1,000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans did not show increased plasma p-tau181. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4%-89.2%), as well as to distinguish between Aβ-and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0%-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.a Continuous variables are given as mean (SD) b Aβ status defined by Aβ PET. * p<0.05 compared with the Aβ+ AD group # p<0.05 compared with the Aβ-CU group Continuous variables were compared with one-way ANOVA followed by Tukey's post-hoc test. Categorical variables were compared with Chi test
IMPORTANCEPlasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.OBJECTIVE To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.
Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer’s disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer’s disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer’s disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer’s disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-β1–42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer’s disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer’s disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer’s disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer’s disease.
Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-beta and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral amyloid-beta and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1,000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by amyloid-beta PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative amyloid-beta PET scans did not show increased plasma p-tau181. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4%-89.2%), as well as to distinguish between amyloid-beta-negative and amyloid-beta-positive individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0%-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.