Objective Pancreatic β cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the β cell gene expression program have received much attention, the post-transcriptional controls that are activated in β cells during stress are largely unknown. We recently identified JUND as a pro-oxidant transcription factor that is post-transcriptionally upregulated in β cells during metabolic stress. Here we seek to uncover the mechanisms underlying this maladaptive response to metabolic stress. Methods RNA-protein and protein-protein interactions were measured using RNA immunoprecipitation and co-immunoprecipitation, respectively, in Min6 cells and mouse islets. Phos-tag analyses were used to assess hnRNPK phosphorylation in primary mouse and human islets and Min6 cells. Translating ribosome affinity purification (TRAP) followed by RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of CRISPR-Cas9 to Min6 cells. Apoptosis was measured in primary islets using a cell-permeable dye with a fluorescence readout of activated cleaved caspase-3 and-7. Results A de novo motif analysis was performed on a subset of genes previously found to be regulated at the level of ribosome binding during PDX1-deficiency, which identified a poly-cytosine (polyC) motif in the 3′UTR of the transcript encoding JUND. The polyC-binding protein hnRNPK bound to the mRNA encoding JUND, leading us to hypothesize that hnRNPK regulates JUND expression during glucolipotoxicity. Indeed, loss of hnRNPK blocked the post-transcriptional upregulation of JUND during metabolic stress. hnRNPK was phosphorylated in mouse and human islets during glucolipotoxicity and in islets of diabetic db/db mice. The MEK/ERK signaling pathway was both necessary and sufficient for the phosphorylation of hnRNPK, upregulation of JUND levels, and induction of pro-oxidant and pro-inflammatory genes. Further, we identified the RNA helicase DDX3X as a new binding partner for hnRNPK that is required for efficient translation of JUND mRNA. Loss of hnRNPK reduced DDX3X binding to translation machinery, suggesting that these factors cooperate to regulate translation in β cells. Conclusions Our results identify a novel ERK/hnRNPK/DDX3X pathway that influences β cell survival and is activated under conditions associated with T2D.
Current evidence indicates that proliferating β-cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β-cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In nonmitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, or most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes before Ki67 coating of the chromosome surface. Pdx1 uniformly localizes in the cytoplasm at prometaphase and becomes enriched around the chromosomes again at the end of cell division, before nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and overexpression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle–dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein levels are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
Current evidence indicates that proliferating β cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In non-mitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, and most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes prior to Ki67 coating the chromosome surface. Pdx1 uniformly localized in the cytoplasm at prometaphase and became enriched around the chromosomes again at the end of cell division, prior to nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and over-expression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein level are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
Current evidence indicates that proliferating β cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In non-mitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, and most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes prior to Ki67 coating the chromosome surface. Pdx1 uniformly localized in the cytoplasm at prometaphase and became enriched around the chromosomes again at the end of cell division, prior to nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and over-expression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein level are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.