Background In oncology, liquid biopsy is of major relevance from theranostic point of view. The searching for mutations in circulating tumor DNA (ctDNA) in case of colorectal cancers (CRCs) allows the optimization of patient care. In this context, independent of mutation status biomarkers are required for its detection to confirm the presence of ctDNA in liquid biopsies. Indeed, the hypermethylation of NPY and WIF1 genes appear to be an ideal biomarker for the specific detection of ctDNA in CRCs. The objective of this work is to develop the research of hypermethylation of NPY and WIF1 by Crystal Digital PCR™ for the detection of ctDNA in CRCs. Methods Detection of hypermethylated NPY and WIF1 was developed on Cristal digital PCR™. Biological validation was performed from a local cohort of 22 liquid biopsies and 23 tissue samples from patients with CRC. These patients were treated at the University Hospital of Besancon (France). Results The local cohort study confirmed that NPY and WIF1 were significantly hypermethylated in tumor tissues compared to adjacent non-tumor tissues (WIF1 p < 0.001; NPY p < 0.001; non-parametric Wilcoxon paired-series test). Histological characteristics, tumor stages or mutation status were not correlated to the methylation profiles. On the other hand, hypermethylation of NPY or WIF1 in liquid biopsy had a 95.5% [95%CI 77–100%] sensitivity and 100% [95%CI 69–100%] specificity. Conclusion Using Crystal digital PCR™, this study shows that hypermethylation of NPY and WIF1 are constant specific biomarkers of CRCs regardless of a potential role in carcinogenesis.
Objectives Human papillomavirus (HPV) is a risk factor for head and neck squamous cell carcinoma (HNSCC), which is currently increasing worldwide. We evaluated the prevalence of HPV DNA and p16 expression in HNSCC patients age <45 years compared with patients aged ≥45 years. Methods Thirty-nine patients aged <45 years who presented at Besançon University Hospital with HNSCC since 2005 were included in this retrospective study. HPV DNA was detected by HPV genotyping and p16 expression was determined by immunohistochemistry using paraffin-embedded tissues. A matched-group of 38 patients aged ≥45 years from Besançon University Hospital was included. Results The overall prevalence of HPV infection was 11.7%. HPV16 was the only genotype detected in 4/39 and 5/38 patients, and p16 was expressed in 6/39 and 4/38 patients aged <45 years and ≥45 years, respectively. Conclusions HPV-positivity and p16 expression were similar in both age groups. The results suggest that p16 immunohistochemistry may provide a prognosis biomarker for all HNSCCs, not only oropharyngeal cancers, and this should be addressed in large clinical trials.
Breast cancers expressing high levels of Ki67 are associated with poor outcomes. Oncotype DX test was designed for ER+/HER2− early-stage breast cancers to help adjuvant chemotherapy decision by providing a Recurrent Score (RS). RS measures the expression of 21 specific genes from tumor tissue, including Ki67. The primary aim of this study was to assess the agreement between Ki67RNA obtained with Oncotype DX RS and Ki67IHC. Other objectives were to analyze the association between the event free survival (EFS) and the expression level of Ki67RNA; and association between RS and Ki67RNA. Herein, we report a low agreement of 0.288 by Pearson correlation coefficient test between Ki67IHC and Ki67RNA in a cohort of 98 patients with early ER+/HER2− breast cancers. Moreover, Ki67RNAhigh tumors were significantly associated with the occurrence of events (p = 0.03). On the other hand, we did not find any association between Ki67IHC and EFS (p = 0.26). We observed a low agreement between expression level of Ki67RNA and Ki67 protein labelling by IHC. Unlike Ki67IHC and independently of the RS, Ki67RNA could have a prognostic value. It would be interesting to better assess the prognosis and predictive value of Ki67RNA measured by qRT-PCR. The Ki67RNA in medical routine could be a good support in countries where Oncotype DX is not accessible.
EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (GABARAP, GABARAPL1, LC3B) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation. IHC experiments, which were conducted in a cohort of patients presenting lung adenocarcinomas, showed high GABARAPL1 and low UPF1 levels in EMT+ tumors. We observed increased levels of GABARAPL1 correlated with decreased levels of NMD factors in A549 cells in vitro. We then confirmed that GABARAPL1 mRNA was indeed targeted by the NMD in a 3′UTR-dependent manner and we identified four overlapping binding sites for UPF1 and eIF4A3 that are potentially involved in the recognition of this transcript by the NMD pathway. Our study suggests that 3′UTR-dependent NMD might be an important mechanism that is involved in the induction of autophagy and could represent a promising target in the development of new anti-cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.