Pulmonary vascular dysfunction is associated with ARDS and leads to increased right-ventricular afterload and eventually right-ventricular failure, also called acute cor pulmonale. Interest in acute cor pulmonale and its negative impact on outcome in patients with ARDS has grown in recent years. Right-ventricular function in these patients should be closely monitored, and this is helped by the widespread use of echocardiography in intensive care units. Because mechanical ventilation may worsen right-ventricular failure, the interaction between the lungs and the right ventricle appears to be a key factor in the ventilation strategy. In this review, a rationale for a right ventricle-protective ventilation approach is provided, and such a strategy is described, including the reduction of lung stress (ie, the limitation of plateau pressure and driving pressure), the reduction of PaCO2 , and the improvement of oxygenation. Prone positioning seems to be a crucial part of this strategy by protecting both the lungs and the right ventricle, resulting in increased survival of patients with ARDS. Further studies are required to validate the positive impact on prognosis of right ventricle-protective mechanical ventilation.
Mean systemic filling pressure (P) defines the pressure measured in the venous-arterial system when the cardiac output is nil. Its estimation has been proposed in patients with beating hearts by building the venous return curve, using different pairs of right atrial pressure/cardiac output during mechanical ventilation. We raised the hypothesis according to which the P is altered by tidal ventilation and positive end-expiratory pressure (PEEP), which would challenge this extrapolation method based on cardiopulmonary interactions. We conducted a two-center, noninterventional, observational, and prospective study, using an arterial and a venous catheter to measure the pressure in the circulatory system at the time of death in critically ill, mechanically ventilated patients with a PEEP. Arterial (P) and venous pressures (P) were recorded in five conditions: at end expiration and end inspiration with and without PEEP and finally once the ventilator was disconnected. P and P did not differ in any experimental conditions. Tidal ventilation increased P and P by 2.4 and 1.9 mmHg, respectively, whereas PEEP increased both values by 1.2 and 1 mmHg, respectively. After disconnection of the ventilator, P and P were 10.0 ± 4.2 and 9.9 ± 4.2 mmHg, respectively. P increases during mechanical ventilation, with an effect of tidal ventilation and PEEP. This calls into question the validity of its evaluation in heart-beating patients using cardiopulmonary interactions during mechanical ventilation. The physiology of the mean systemic filling pressure (P) is not well understood in human beings. This study is the first report of a tidal ventilation- and positive end-expiratory pressure-related increase in P in critically ill patients. The results challenge the utility and the value estimating P in heart-beating patients by reconstruction of the venous return curve using varying inflation pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.