In order to limit the spread of the coronavirus, several protective measures have been put in place in the community, in private and public residences and in health care centers. Some measures have a negative impact on communication. They include physical distancing, the use of face masks and shields as well as the increased use of telephone and videoconferencing for distance communication. The effects of COVID-19 are particularly harsh on older adults. Consequently, older adults, especially those with hearing loss, are particularly at risk of experiencing communication breakdowns and increased social isolation. Health care professionals should learn about and be encouraged to use communication strategies to maintain good interactions with their patients. This article proposes practical suggestions to health professionals who interact with older adults, especially those who have difficulty understanding speech. The goal of this article is to inform on the prevalence of hearing loss, the hearing difficulties experienced by older adults, the manifestations of hearing problems, the effects of pandemic protection measures on communication and the strategies that can be used to optimize professional-patient communication during a pandemic.
The primary aim of this study was to investigate whether auditory brainstem response (ABR) and speech perception in noise (SPiN) were associated with occupational noise exposure in normal hearing young factory workers. Forty young adults occupationally exposed to noise and 40 non-exposed young adults (control group) from Zhejiang province in China were selected. All participants presented with normal hearing thresholds and distortion product otoacoustic emissions. Participants were evaluated with the Mandarin Bamford-Kowal-Bench (BKB) test and ABR. The latter was obtained for click stimulus at 50, 60, 70, 80, and 90 dBnHL. Peak-to-trough amplitudes and latencies for waves I and V were obtained. The ABR wave I amplitude, the wave I/V amplitude ratio, the slope of the wave I amplitude growth as a function of stimulus intensity (AMP-ISlope), and the wave V latency shift with ipsilateral noise (LAT-VSlope) were used as ABR outcomes. Finally, equivalent continuous average sound pressure level normalized to 8 h (LAeq.8h) and cumulative noise exposure (CNE) were obtained for noise-exposed participants. No significant differences between groups were found for any ABR outcomes. Noise-exposed participants exhibited worse BKB scores than control group participants. A multivariate regression model showed that 23.3% of the variance in BKB scores was explained by group category (exposed vs. non-exposed) and hearing thresholds. However, since none of the ABR outcomes exploring cochlear synaptopathy were associated with noise exposure, we cannot conclude that cochlear synaptopathy was the contributing factor for the differences between groups for BKB scores. Factors that go beyond sensory processing may explain such results, especially given socio-economic differences between the noise-exposed and control groups. We conclude that in this sample of participants, occupational noise exposure was not associated with signs of cochlear synaptopathy as measured by ABR and BKB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.