Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.9509 kDa.
Snake venoms are complex mixtures of proteins, which affect the vital biologic systems of prey, as well as humans. Envenomation leads to immobilization by paralysis, cardiac, and circulatory failure. These same venom proteins that cause havoc in the physiologic system could be used as therapeutic agents. Disintegrins and disintegrin-like proteins are molecules found in the venom of four snake families (Atractaspididae, Elapidae, Viperidae, and Colubridae). The disintegrins are non-enzymatic proteins that inhibit cell-cell interactions, cell-matrix interactions, and signal transduction. These proteins may have potential in the treatment of strokes, heart attacks, cancers, osteoporosis, and diabetes. The present study describes the isolation and characterization of a disintegrin (colombistatin) found in the venom of the Venezuelan snake mapanare (Bothrops colombiensis). Colombistatin was purified by a two-step high-performance liquid chromatography procedure, which included reverse phase C18 and size exclusion protein Pak 60. Colombistatin inhibited ADP-induced platelet aggregation, human urinary (T24) and skin melanoma (SK-Mel-28) cancer cell adhesion to fibronectin, and cell migration. Colombistatin contained 72 amino acids with a mass of 7.778 kDa as determined by mass spectrometry. Colombistatin could be used as a therapeutic tool in the treatment of melanoma cancers and also thrombotic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.