Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear–cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.
Human embryonic carcinoma (EC; NCCIT) cells have self-renewal ability and pluripotency. Cancer stem cell markers are highly expressed in NCCIT cells, imparting them with the pluripotent nature to differentiate into other cancer types, including breast cancer. As one of the main cancer stem cell pathways, Wnt/β-catenin is also overexpressed in NCCIT cells. Thus, inhibition of these pathways defines the ability of a drug to target cancer stem cells. Tannic acid (TA) is a natural polyphenol present in foods, fruits, and vegetables that has anti-cancer activity. Through Western blotting and PCR, we demonstrate that TA inhibits cancer stem cell markers and the Wnt/β-catenin signaling pathway in NCCIT cells and through a fluorescence-activated cell sorting analysis we demonstrated that TA induces sub-G1 cell cycle arrest and apoptosis. The mechanism underlying this is the induction of mitochondrial reactive oxygen species (ROS) (mROS), which then induce the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptosis pathway instead of intrinsic mitochondrial apoptosis pathway. Moreover, ribonucleic acid sequencing data with TA in NCCIT cells show an elevation in TRAIL-induced extrinsic apoptosis, which we confirm by Western blotting and real-time PCR. The induction of human TRAIL also proves that TA can induce extrinsic apoptosis in NCCIT cells by regulating mROS.
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Background/Aim: Non-small cell lung cancer (NSCLC) is one among the most common cancers worldwide. Recently, dietary phytochemicals have been reported as an attractive approach to improve the symptoms of NSCLC patients. Tannic acid is a natural polyphenol, which is known to have anticancer effects on in vitro models of breast, gingival and colon cancer. However, the molecular mechanisms associated with the actions of tannic acid on A549 human lung cancer cells have not been elucidated. Materials and Methods: In this study, we analyzed the effect of tannic acid on A549 cells and their underlying mechanisms using western blotting, flow cytometry, invasion assay and tumorsphere formation assay. Results: Tannic acid treatment suppressed the viability of A549 cells through cell cycle arrest and induction of the intrinsic pathways of apoptosis. In addition, the various malignant phenotypes of A549 cells including invasion, migration, and stemness were inhibited by tannic acid treatment. Conclusion: Tannic acid could be used as an effective inhibitor of lung cancer progression.
High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.