Chlamydomonas reinhardtii is a model green microalga capable of heterotrophic growth on acetic acid but not fatty acids, despite containing a full complement of genes for β-oxidation. Recent reports indicate that the alga preferentially sequesters, rather than breaks down, lipid acyl chains as a means to rebuild its membranes rapidly. Here, we assemble a list of potential Chlamydomonas peroxins (PEXs) required for peroxisomal biogenesis to suggest that C. reinhardtii has a complete set of peroxisome biogenesis factors. To determine involvements of the peroxisomes in the metabolism of exogenously added fatty acids, we examined transgenic C. reinhardtii expressing fluorescent proteins fused to N- or C-terminal peptide of peroxisomal proteins, concomitantly with fluorescently labeled palmitic acid under different trophic conditions. We used confocal microscopy to track the populations of the peroxisomes in illuminated and dark conditions, with and without acetic acid as a carbon source. In the cells, four major populations of compartments were identified, containing: (1) a glyoxylate cycle enzyme marker and a protein containing peroxisomal targeting signal 1 (PTS1) tripeptide but lacking the fatty acid marker, (2) the fatty acid marker alone, (3) the glyoxylate cycle enzyme marker alone, and (4) the PTS1 marker alone. Less than 5% of the compartments contained both fatty acid and peroxisomal markers. Statistical analysis on optically sectioned images found that C. reinhardtii simultaneously carries diverse populations of the peroxisomes in the cell and modulates peroxisomal contents based on light conditions. On the other hand, the ratio of the compartment containing both fatty acid and peroxisomal markers did not change significantly regardless of the culture conditions. The result indicates that β-oxidation may be only a minor occurrence in the peroxisomal population in C. reinhardtii, which supports the idea that lipid biosynthesis and not β-oxidation is the primary metabolic preference of fatty acids in the alga.
The mechanisms governing chemotaxis in Chlamydomonas reinhardtii are largely unknown compared to those regulating phototaxis despite equal importance on the migratory response in the ciliated microalga. To study chemotaxis, we made a simple modification to a conventional Petri dish assay. Using the assay, a novel mechanism governing Chlamydomonas ammonium chemotaxis was revealed. First, we found that light exposure enhances the chemotactic response of wild-type Chlamydomonas strains, yet phototaxis-incompetent mutant strains, eye3-2 and ptx1, exhibit normal chemotaxis. This suggests that Chlamydomonas transduces the light signal pathway in chemotaxis differently from that in phototaxis. Second, we found that Chlamydomonas collectively migrate during chemotaxis but not phototaxis. Collective migration during chemotaxis is not clearly observed when the assay is conducted in the dark. Third, the Chlamydomonas strain CC-124 carrying agg1−, the AGGREGATE1 gene (AGG1) null mutation, exhibited a more robust collective migratory response than strains carrying the wild-type AGG1 gene. The expression of a recombinant AGG1 protein in the CC-124 strain suppressed this collective migration during chemotaxis. Altogether, these findings suggest a unique mechanism; ammonium chemotaxis in Chlamydomonas is mainly driven by collective cell migration. Furthermore, it is proposed that collective migration is enhanced by light and suppressed by the AGG1 protein.
The mechanisms governing chemotaxis in Chlamydomonas reinhardtii are largely unknown compared to those regulating phototaxis despite equal importance on the migratory response in the ciliated microalga. To study chemotaxis, we developed a simple Petri dish assay. Using the assay, a novel mechanism governing Chlamydomonas ammonium chemotaxis was revealed. First, we found that light exposure enhances the chemotactic response of wild-type Chlamydomonas strains, yet phototaxis-incompetent mutant strains, eye3-2 and ptx1, exhibit normal chemotaxis. This suggests that Chlamydomonas transduces the light signal pathway in chemotaxis differently from that in phototaxis. Second, we found that Chlamydomonas collectively migrate during chemotaxis but not phototaxis. Collective migration during chemotaxis is not clearly observed when the assay is conducted in the dark. Third, the Chlamydomonas strain CC-124 carrying agg1-, the AGGREGATE1 gene (AGG1) null mutation, exhibited a more robust collective migratory response than strains carrying the wild-type AGG1 gene. The expression of a recombinant AGG1 protein in the CC-124 strain suppressed this collective migration during chemotaxis. Altogether, these findings suggest a unique mechanism; ammonium chemotaxis in Chlamydomonas is mainly driven by collective cell migration. Furthermore, it is proposed that collective migration is enhanced by light and suppressed by the AGG1 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.