Anionic water clusters, (H2O)n(-), of various sizes, n = 1-8, have been investigated using high-level ab initio calculations and the quantum theory of atoms in molecules, which provides a topological analysis of the electron density. The results of the current study indicate that the distribution of the excess electron is dependent on the geometry of the cluster. Non-nuclear attractors (NNAs), with associated pseudo-atomic basins and populations, are observed only in the highly symmetric clusters in which several non-hydrogen-bonded (NHB) hydrogen atoms are oriented toward a central cavity. For the latter cases, the non-nuclear attractor can be considered a pseudo-atom, possessing a significant portion of the excess electron within the cavity, consistent with the cavity-bound model of the solvated electron. In some cases, the population of the NNA is more than 0.2 electrons, and it contributes in excess of 20 kJ/mol to the energy of the system. Furthermore, the less symmetric systems, which tend to orient the NHB hydrogen atoms away from the center of the cluster, tend to delocalize the excess electron to a greater extent over several atoms at the surface of the cluster, consistent with the surface-bound model of the excess electron.
Guanine quadruplexes have received a lot of attention due to their possible role as therapeutic agents. Specifically, it is the ability of these quadruplex structures to inhibit telomerase, an enzyme found to be highly active in a large percentage of tumor cells and thought to confer immortality upon these cells. However, although a great deal of research has focused on enhancing the formation of these structures and their anticancer activity, many questions remain about the quadruplex structures themselves. The current study probes the nature of these quadruplex structures at the atomic level. Individual atomic energies have been computed for the quadruplex structure and compared to the atomic energies of the unfolded telomere to determine the energetic consequences of quadruplex formation. The results suggest several interesting trends, most notably that the guanine quartets exhibit an alternating pattern of stabilization and destabilization and these regions actually overlap in the intact quadruplex. In addition, the TTA loop segments are largely stabilized, whereas the atoms in the sugar-phosphate backbone exhibit mostly minor changes going from the unfolded to folded state. Inclusion of additional sodium cations in the central core of the quadruplex has a minimal effect on the atomic energies except for the atoms that are closest to the cations, which are largely stabilized in the presence of these ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.