BackgroundClinical treatment of cardiac arrhythmia by radiofrequency ablation (RFA) currently lacks quantitative and precise visualization of lesion formation in the myocardium during the procedure. This study aims at evaluating thermal dose (TD) imaging obtained from real-time magnetic resonance (MR) thermometry on the heart as a relevant indicator of the thermal lesion extent.MethodsMR temperature mapping based on the Proton Resonance Frequency Shift (PRFS) method was performed at 1.5 T on the heart, with 4 to 5 slices acquired per heartbeat. Respiratory motion was compensated using navigator-based slice tracking. Residual in-plane motion and related magnetic susceptibility artifacts were corrected online. The standard deviation of temperature was measured on healthy volunteers (N = 5) in both ventricles. On animals, the MR-compatible catheter was positioned and visualized in the left ventricle (LV) using a bSSFP pulse sequence with active catheter tracking. Twelve MR-guided RFA were performed on three sheep in vivo at various locations in left ventricle (LV). The dimensions of the thermal lesions measured on thermal dose images, on 3D T1-weighted (T1-w) images acquired immediately after the ablation and at gross pathology were correlated.ResultsMR thermometry uncertainty was 1.5 °C on average over more than 96% of the pixels covering the left and right ventricles, on each volunteer. On animals, catheter repositioning in the LV with active slice tracking was successfully performed and each ablation could be monitored in real-time by MR thermometry and thermal dosimetry. Thermal lesion dimensions on TD maps were found to be highly correlated with those observed on post-ablation T1-w images (R = 0.87) that also correlated (R = 0.89) with measurements at gross pathology.ConclusionsQuantitative TD mapping from real-time rapid CMR thermometry during catheter-based RFA is feasible. It provides a direct assessment of the lesion extent in the myocardium with precision in the range of one millimeter. Real-time MR thermometry and thermal dosimetry may improve safety and efficacy of the RFA procedure by offering a reliable indicator of therapy outcome during the procedure.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-017-0323-0) contains supplementary material, which is available to authorized users.
BACKGROUND AND PURPOSE: Endolymphatic hydrops in patients with Menière disease relies on delayed postcontrast 3D-FLAIR sequences. The purpose of this study was to compare the degree of perilymphatic enhancement and the detection rate of endolymphatic hydrops using constant and variable flip angles sequences. MATERIALS AND METHODS:This was a retrospective study performed in 16 patients with Menière disease who underwent 3T MR imaging 4 hours after gadolinium injection using two 3D-FLAIR sequences with a constant flip angle at 140°for the first and a heavily-T2 variable flip angle for the second. The signal intensity ratio was measured using the ROI method. We graded endolymphatic hydrops and evaluated the cochlear blood-labyrinth barrier impairment.RESULTS: Both for symptomatic and asymptomatic ears, the median signal intensity ratio was significantly higher with the constant flip angle than with the heavily-T2 variable flip angle (7.16 versus 1.54 and 7.00 versus 1.45, P , .001). Cochlear blood-labyrinth barrier impairment was observed in 4/18 symptomatic ears with the heavily-T2 variable flip angle versus 8/19 with constant flip angle sequences. With heavily-T2 variable flip angle sequences, endolymphatic hydrops was observed in 7-10/19 symptomatic ears versus 12/19 ears with constant flip angle sequences. We found a significant association between the clinical symptomatology and the presence of endolymphatic hydrops with constant flip angle but not with heavily-T2 variable flip angle sequences. Interreader agreement was always perfect with constant flip angle sequences while it was fair-to-moderate with heavily-T2 variable flip angle sequences.CONCLUSIONS: 3D-FLAIR constant flip angle sequences provide a higher signal intensity ratio and are superior to heavily-T2 variable flip angle sequences in reliably evaluating the cochlear blood-labyrinth barrier impairment and the endolymphatic space.ABBREVIATIONS: BLB ¼ blood-labyrinth barrier; CFA ¼ constant flip angle; EH ¼ endolymphatic hydrops; hVFA ¼ heavily-T2 variable flip angle; MD ¼ Menière disease; SIR ¼ signal intensity ratio; VFA ¼ variable flip angle M enière Disease (MD), consisting of recurrent spells of
ObjectivesThe primary end point of this study was to evaluate the image quality and reliability of a highly accelerated 3-dimensional T2 turbo spin echo (3D-T2-TSE) sequence with prototype iterative denoising (ID) reconstruction compared with conventional 2D T2 sequences for the diagnosis of deep infiltrating endometriosis (DIE). The secondary end point was to demonstrate the 3D-T2-TSE sequence image quality improvement using ID reconstruction.Material and MethodsPatients were prospectively enrolled to our institution for pelvis magnetic resonance imaging because of a suspicion of endometriosis over a 4-month period. Both conventional 2D-T2 (sagittal, axial, coronal T2 oblique to the cervix) and 3D-T2-TSE sequences were performed with a scan time of 7 minutes 43 seconds and 4 minutes 58 seconds, respectively. Reconstructions with prototype ID (3D-T2-denoised) and without prototype ID (3D-T2) were generated inline at the end of the acquisition. Two radiologists independently evaluated the image quality of 3D-T2, 3D-T2-denoised, and 2D-T2 sequences. Diagnosis confidence of DIE was evaluated for both 3D-T2-denoised and 2D-T2 sequences. Intraobserver and interobserver agreements were calculated using Cohen κ coefficient.ResultsNinety female patients were included. Both readers found that the ID algorithm significantly improved the image quality and decreased the artifacts of 3D-T2-denoised compared with 3D-T2 sequences (P < 0.001). A significant image quality improvement was found by 1 radiologist for 3D-T2-denoised compared with 2D-T2 sequences (P = 0.002), whereas the other reader evidenced no significant difference. The interobserver agreement of 3D-T2-denoised and 2D-T2 sequences was 0.84 (0.73–0.95) and 0.78 (0.65–0.9), respectively, for the diagnosis of DIE. Intraobserver agreement for readers 1 and 2 was 0.86 (0.79–1) and 0.83 (0.76–1), respectively. For all localization of DIE, interobserver and intraobserver agreements were either almost perfect or substantial for both 3D-T2-denoised and 2D-T2 sequences.ConclusionsThree-dimensional T2-denoised imaging is a promising tool to replace conventional 2D-T2 sequences, offering a significant scan time reduction without compromising image quality or diagnosis information for the assessment of DIE.
Background Magnetic resonance (MR) thermometry allows visualization of lesion formation in real‐time during cardiac radiofrequency (RF) ablation. The present study was performed to evaluate the precision of MR thermometry without RF heating in patients exhibiting cardiac arrhythmia in a clinical setting. The evaluation relied on quantification of changes in temperature measurements caused by noise and physiological motion. Methods Fourteen patients referred for cardiovascular magnetic resonance imaging underwent an extra sequence to test the temperature mapping stability during free‐breathing acquisition. Phase images were acquired using a multi‐slice, cardiac‐triggered, single‐shot echo planar imaging sequence. Temperature maps were calculated and displayed in real‐time while the electrocardiogram (ECG) was recorded. The precision of temperature measurement was assessed by measuring the temporal standard deviation and temporal mean of consecutive temperature maps over a period of three minutes. The cardiac cycle was analyzed from ECG recordings to quantify the impact of arrhythmia events on the precision of temperature measurement. Finally, two retrospective strategies were tested to remove acquisition dynamics related either to arrhythmia events or sudden breathing motion. Results ECG synchronization allowed categorization of inter‐beat intervals (RR) into distinct beat morphologies. Five patients were in stable sinus rhythm, while nine patients showed irregular RR intervals due to ectopic beats. An average temporal standard deviation of temperature of 1.6°C was observed in patients under sinus rhythm with a frame rate corresponding to the heart rate of the patient. The temporal standard deviation rose to 2.5°C in patients with arrhythmia. The retrospective rejection strategies increased the temperature precision measurement while maintaining a sufficient frame rate. Conclusions Our results indicated that real‐time cardiac MR thermometry shows good precision in patients under clinical conditions, even in the presence of arrhythmia. By providing real‐time visualization of temperature distribution within the myocardium during RF delivery, MR thermometry could prevent insufficient or excessive heating and thus improve safety and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.