Heterochromatin formation in budding yeast is regulated by the silent information regulator (SIR) complex. The SIR complex comprises the NADdependent deacetylase Sir2, the scaffolding protein Sir4, and the nucleosome-binding protein Sir3.Transcriptionally active regions present a challenge to SIR complex-mediated de novo heterochromatic silencing due to the presence of antagonistic histone PTMs, including acetylation and methylation. Methylation of histone H3K4 and H3K79 are dependent on mono-ubiquitination of histone H2B (H2B-Ub). The SIR complex cannot erase H2B-Ub or histone methylation on its own. The deubiquitinase (DUB) Ubp10 is thought to promote heterochromatic silencing by maintaining low H2B-Ub at sub-telomeres. Here, we biochemically characterize the interactions between Ubp10 and the SIR complex machinery. We demonstrate that a direct interaction between Ubp10 and the Sir2/4 sub-complex facilitates Ubp10 recruitment to chromatin via a co-assembly mechanism. Using hydrolyzable H2B-Ub analogs, we show that Ubp10 activity is lower on nucleosomes compared to H2B-Ub in solution. We find that Sir2/4 stimulates Ubp10 DUB activity on nucleosomes, likely through a combination of targeting and allosteric regulation. This coupling mechanism between the silencing machinery and its DUB partner allows erasure of active PTMs and the de novo transition of a transcriptionally active DNA region to a silent chromatin state.
Cell-free DNA (cfDNA) has the potential to enable non-invasive detection of disease states and progression. Beyond its sequence, cfDNA also represents the nucleosomal landscape of cell(s)-of-origin and captures the dynamics of the epigenome. In this review, we highlight the emergence of cfDNA epigenomic methods that assess disease beyond the scope of mutant tumour genotyping. Detection of tumour mutations is the gold standard for sequencing methods in clinical oncology. However, limitations inherent to mutation targeting in cfDNA, and the possibilities of uncovering molecular mechanisms underlying disease, have made epigenomics of cfDNA an exciting alternative. We discuss the epigenomic information revealed by cfDNA, and how epigenomic methods exploit cfDNA to detect and characterize cancer. Future applications of cfDNA epigenomic methods to act complementarily and orthogonally to current clinical practices has the potential to transform cancer management and improve cancer patient outcomes.
Genome-wide binding profiles of estrogen receptor (ER) and FOXA1 reflect cancer state in ER + breast cancer. However, routine profiling of tumor transcription factor (TF) binding is impractical in the clinic. Here, we show that plasma cell-free DNA (cfDNA) contains high-resolution ER and FOXA1 tumor binding profiles for breast cancer. Enrichment of TF footprints in plasma reflects the binding strength of the TF in originating tissue. We defined pure in vivo tumor TF signatures in plasma using ER + breast cancer xenografts, which can distinguish xenografts with distinct ER states. Furthermore, state-specific ER-binding signatures can partition human breast tumors into groups with significantly different ER expression and mortality. Last, TF footprints in human plasma samples can identify the presence of ER + breast cancer. Thus, plasma TF footprints enable minimally invasive mapping of the regulatory landscape of breast cancer in humans and open vast possibilities for clinical applications across multiple tumor types.
Heterochromatin domains are stably-repressed chromatin structures composed of a core assembly of silencing proteins that condense adjacent nucleosomes. The minimal heterochromatin structure can serve as a platform for recruitment of complementary regulatory factors. We find that a reconstituted budding yeast heterochromatin domain can act as a platform to recruit multiple factors that play a role in regulating heterochromatin function. We uncover the direct interaction between the SIR heterochromatin complex and a chromosomal boundary protein that restricts the spread of heterochromatin. We find that the SIR complex relieves a mechanism of auto-inhibition within the boundary protein Yta7, allowing the Yta7 bromodomain to engage chromatin. Our results suggest that budding yeast shares with other eukaryotes the ability to establish complex heterochromatin domains that coordinate multiple mechanisms of silencing regulation through physical interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.