Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for glucose analysis in blood serum sample has been developed. In this study, the type of used zeolite was TS-1. Imprinted zeolite (IZ) was synthesized with mole ratio of glucose/Si of 0.0306. The modified electrode prepared by mixing activated carbon, imprinted zeolite, and paraffin granule with mass ratio 9:4:7 from the measurement in range of 10 -5 -10 -2 M is with Nernst factor of 28.6 mV/decade, and the detection limit of 4.79 x 10 -5 M. The electrode was able to respond the glucose molecules in solution quickly (<30 s), stable for more than 9 weeks (130 times usage) and selective to glucose molecules. The urea, uric acid, and creatine with various concentrations did not interfere to glucose analysis by potentiometry using the electrode. Applying of the electrode for glucose analysis in spiked blood serum samples showed that it had recovery of 91.73±3.48% (n=5), while its accuracy against spectrophotometry method as commonly used method in medical field was 90.58±4.65% (n=5). Based on its performance, potentiometry using the imprinted zeolite modified carbon paste electrode is recommended as an alternative method for routine blood glucose analysis in the medical field.
Imprinted zeolite modified carbon paste (carbon paste-IZ) electrode had been developed as a sensor to analyze blood glucose content by potentiometry. The used zeolite was Lynde Type A (LTA) that synthesized with a mole ratio of Na2O, Al2O3, SiO2 and H2O of 4:1:1.8:270, respectively while non-imprinted zeolite was prepared with a mole ratio of glucose/Si of 0.0306. Glucose was then extracted from the zeolite framework using hot water (80 °C) to produce imprinted zeolite (IZ). The carbon paste-IZ electrode prepared from activated carbon, paraffin pastilles, and IZ with a mass ratio of 5:4:1 showed the best performance. The modified electrode demonstrated the measurement range of 10–4-10–2 M, the Nernst factor of 29.55 mV/decade, the response time less than 120 s, and the detection limit of 5.62 × 10–5 M. Ascorbic acid, uric acid, urea and creatinine did not interfere on the glucose analysis by potentiometry. Comparison test with spectrophotometry showed an accuracy of (90.7 ± 1.4)% (n = 5), while the application of the electrode to analyze five spiked serum samples showed recovery of (92.2 ± 1.3)% (n = 5). The electrode was stable for up to 9 weeks (168 times usage). Based on its performance, the developed electrode can be applied to analyze glucose in human serum sample and recommended for used in the medical field.
Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.
In this study water repellent layered glass has been prepared by coating silica (SiO2) combined with a hydrophobic silane compound. SiO2 was extracted from rice hull ash and two silane compounds, namely hexadecyltrimethoxysilane (HDTMS) and trimethylchlorosilane (TMCS) were used. Coating was performed through two deposition techniques, i.e. one step (mono-layer) and layer by layer (LBL, multi-layer). The effect of silane to SiO2 mole ratio, silane type and layer number on the glass characters was evaluated. Characterization included hydrophobicity, transparency, surface roughness and stability of coating. Results showed that increasing the mole ratio of silane to SiO2 and the layer number increased the hydrophobicity of the glass surface. The optimum mole ratio was 5:1 and the significant increase of contact angle occurred at lower mole ratio, but the stability tends to be increased at higher mole ratio. For HDTMS-SiO2 layer, the technique of LBL technique produced a coating with higher hydrophobicity and transparency than single-stage one. The LBL technique produced the highest water contact angle of 103.7° with transmittance of 96%, while for TMCS-SiO2 layer the one stage technique produced hydrophobic layer with higher water contact angle of 108.0° and transparency about 94.52%. The prepared hydrophobic glasses were relatively stable in polar and non-polar solvents, but unstable to ambient conditions.
Polyethersulfon (PES) membrane has been widely used in the biomedical field especially in hemodialysis application. Many modifications of membranes have been applied into hemodialysis such as diffusion, adsorption, and mixed-matrix membrane. The main problem of those membranes is less selectivity to attract the uremic toxins. In this study, we report the modification of PES mixed with cellulose acetate (PES/CA) membrane as mixed-matrix membrane (MMM) using imprinted-zeolite (PES/CA/IZC) in order to increase the selectivity for targeted analyte. The hollow fibre membranes (HFM) were fabricated by dry-wet spinning technique. The successful zeolite A synthesised and was characterised by x-ray diffraction (XRD). The mixed-matrix membranes were characterised in terms of morphology using scanning electron microscopy (SEM), water contact angle (WCA), pure water flux (PWF), clearance of creatinine (CC), and BSA adsorption. In accordance with the results of characterisation, the synthesis of zeolite A, and imprinted-zeolite creatinine was successfully fabricated. The SEM results showed that the PES/CA/IZC membrane has uniform pores and fingerlike structure. The same result was obtained for PES/CA membrane, but not for PES/CA/ZA membrane. The WCA of the PES/CA; PES/CA/ZA; and PES/CA/IZC were 85.63; 84.98; and 77.53 (o), respectively. While the PWF were 22.84; 27.57, and 40.52 (Lm-2h-1), respectively. The addition of imprinted-zeolite into the membrane improved creatinine removal up to 74.99%. It showed that PES/CA/IZC has succeeded in increasing the selectivity of membranes to attract the creatinine as target analyte. Compared to the PES/CA, the creatinine clearance of membranes improved and increased up to 5.2%. For protein rejection, the PES/CA/IZC rejected 79.05% of bovine serum albumin (BSA). Based on these results, it can be concluded that PES/CA/IZC can be considered as hemodialysis membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.