The outbreaks of infectious diseases that spread across countries have generally existed for centuries. An example is the occurrence of the COVID-19 pandemic in 2020, which led to the loss of lives and economic depreciation. One of the essential ways of handling the spread of viruses is the discovery and administration of vaccines. However, the major challenges of vaccination programs are associated with the vaccine cold chain management and cold storage facilities. This paper discusses how vaccine cold chain management and cold storage technology can address the challenges of vaccination programs. Specifically, it examines different systems for preserving vaccines in either liquid or frozen form to help ensure that they are not damaged during distribution from manufacturing facilities. Furthermore, A vaccine is likely to provide very low efficacy when it is not properly stored. According to preliminary studies, the inability to store vaccine properly is partly due to the incompetency of many stakeholders, especially in technical matters. The novelty of this study is to thoroughly explore cold storage technology for a faster and more comprehensive vaccine distribution hence it is expected to be one of the reference and inspiration for stakeholders.
Diesel engines is an internal combustion engine with high thermal efficiency, which also uses biodiesel fuel, an environmentally friendly, non-toxic, and low sulfur content. Biodiesel has been around for a long time due to its similar characteristics to diesel fuels which has limited availability. However, several disadvantages are associated with biodiesel, such as poor volatility and high viscosity, which reduces engine performance. Therefore, this study was carried out to improve the diesel engine performance by mixing biodiesel with ecodiesel (ED), an additive produced from natural ingredients that is dissolvable in biodiesel. The biodiesel fuel properties used are density 860 kg/m 3 , dynamic viscosity 4.50E-06 m 2 /s, cetane number 45, and flashpoint 52°C. The results showed that biodiesel-ED mixture could improve engine performance and the optimum performance was at a speed of 3000 rpm on 43.30 (kW), 124.93 (N.m) of the engine torque, and 2.45E -5 (kg/kW.s) of the specific fuel consumption. According to paired sample t-test, the difference in the engine performance is only experienced in the torque, which has a significant increase in the composition of the biodiesel+ED by 0.07 gr mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.