The changes in the electronic absorption spectra of ferrocene in the halocarbon solvents chloroform and carbontetrachloride have been investigated under photoexcitation in nitrogen atmosphere. Photoexcitations have been made with monochromatic light (using an Xe-source and a monochromator), at intervals of a few nanometers in the spectral range 220-750 nm. Analysing the spectra by a modified method the position of the charge-transfer-to-solvent (CTTS) band has been located for both the solvents. The position of the CTTS band in the case of carbontetrachloride solution located (320 nm) by the present study is different from the previously reported value (307 nm), while from the previous studies the position of the CTTS band in the case of the spectra of ferrocene in chloroform was not clear. From the present investigation, the changes in spectra after photoexcitation studied as a function, the concentration of ferrocene in the solution and the time (duration) of photoexcitations, have been observed to be systematic. Using the position of the new band (320 nm) for the CTTS transition in the case of carbontetrachloride, ionization potential of ferrocene has been estimated and the estimated value has shown excellent agreement with the experimental value indicating the exactness of the newly located CTTS band position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.