A systematic theoretical study on conformational transformations of monosubstituted (ortho- and para-) aromatic nitroso oxides R-C6H4NOO was performed. The existence of two rotation axes enables two types of conformational transitions in substituted arylnitroso oxides: trans/cis (rotation around the N-O bond) and syn/anti (rotation around the C-N bond, which is important in ortho isomers). The complete set of conformers was localized for R-C6H4NOO using four selected density functional (M06-L, mPWPW91, OLYP, and HCTH) and augmented polarization basis set of triple splitting. It was found that the activation enthalpy of the trans-cis conformational transition is nearly insensitive to the nature of R and ranges within 58-60 kJ/mol for para isomers. The ortho substituent has an insignificant effect on ΔH(≠)trans→cis: it increases this value by ∼5 kJ/mol in syn isomers and decreases it by ∼3 kJ/mol in anti isomers. On the contrary, the syn-anti conformational barrier is considerably affected by the substituent R; an increase in the electron-withdrawing properties of R decreases ΔH(≠)syn→anti. The activation enthalpies grow with increasing polarity of the solvent, as it was found using IEFPCM calculation. The values of relaxation time for all conformational equilibria were calculated and compared with known lifetimes of aromatic nitroso oxides. Our results suggest that syn/anti transitions occur fast enough in the scale of the experimental lifetime. However, trans/cis transformations proceed more slowly. And under certain conditions discussed in the paper, the rate of this conformational transition limits that of irreversible decay of nitroso oxide.
The mechanism of the photooxidation of aromatic azides containing a substituent at one of the ortho positions (2,4-dimethoxyphenyl azide (1a) and 2-methyl-4-[(2E)-1-methylbut-2-en-1-yl]phenyl azide (1b)) was studied in acetonitrile. The electronic spectra and the kinetic regularities of the consumption of corresponding nitroso oxides, which are the reaction intermediates, were investigated by flash photolysis. Owing to the one-and-a-half order of the C-N and N-O bonds and asymmetric molecule structure these nitroso oxides exist as four conformers (cis/syn, cis/anti, trans/syn, and trans/anti). The conformers differ in the spectral properties and in the reactivity in various irreversible transformations. The only product, (2Z,4E)-4-methoxy-6-oxohepta-2,4-dienenitrile oxide (7a), was observed during photooxidation of 1a, whereas transformations of the nitroso oxide isomers derived from 1b led to a set of stable products: the cis/anti isomer was transformed into (3,4,7-trimethyl-3a,4-dihydro-2,1-benzisoxazol-5(3H)-ylidene)ethanal (10), the trans isomers recombined forming the corresponding nitro and nitroso compounds, and the most reactive cis/syn isomer was transformed into ortho-nitrosobenzyl alcohol 11. The last was oxidized slowly to the corresponding benzaldehyde 12. Interaction of 11 and 12 led to the formation of (Z)-1,2-bis(2-formyl-4-((2E)-1-methylbut-2-en-1-yl)phenyl)diazene-1-oxide (13). The DFT simulation and kinetic modeling of the nitroso oxide transformations as well as the product analysis allowed revealing the fine details of the mechanism of decay for these species.
A systematic theoretical study at the M06L/6‐311+G(d, p) level of theory was carried out to calculate the activation barriers ΔH≠ for the intramolecular ortho‐cyclization of aromatic nitroso oxides 2‐R‐C6H4NOO and to reveal the effect of substituent nature and position in the benzene ring on the nitroso oxides reactivity. A set of 24 substituents with widely differing spatial and electronic properties (inductive, resonant, steric effects of R) was studied. The para‐substituent was shown to have little effect on the ΔH≠ value. The full set of effects of the R substituent contributes to the reactivity of ArNOO for 3‐substituted aromatic nitroso oxides. In the case of 5‐substituted ArNOO the Hammett‐type relationship was obtain to describe inductive and resonant effects of R on the ortho‐cyclization reactivity. The ortho‐cyclization for 2‐substituted nitroso oxides is a nontrivial example of the existence of an “inverted” steric effect, when an increase in substituent size accelerates intramolecular transformation. The substituent in position 6 also exhibits an “inverted” steric effect, but it is noticeably weaker than that for 2‐R‐C6H4NOO.
The mechanism of the photooxidation of a number of asymmetrically substituted phenyl azides in acetonitrile was studied. The key intermediates of this reaction are the corresponding nitroso oxides, the unimolecular consumption of which occurs via the cis form when the terminal oxygen atom of the NOO moiety reacts with the ortho position of the aromatic ring. As a result, it is opened to form a nitrile oxide. In the case of 3-methylphenyl azide, the reaction proceeds via the cis/syn form of nitroso oxide with a regioselectivity of 91%. The methoxy substituent at the para position changes the direction of the ortho-cyclization so that it occurs via the cis/anti form of nitroso oxide independently on the nature of a meta substituent. Nitrile oxides, which are formed as a result of these transformations of nitroso oxides, are stabilized by [3 + 2] cycloaddition with acetonitrile to give 1,2,4-oxadiazoles. The observed regioselectivity of the ortho-cyclization of nitroso oxides was explained using theoretical methods. Its cause consists in the extra-stabilization of the transition state of the reaction of the cis/anti form due to a stereoelectronic effect of the para-methoxy substituent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.