Jatropha Curcas is a very useful plant that can be used as a bio fuel for diesel engines replacing the coal. In Indonesia, there are few plantation that plant Jatropha Curcas. But there is so limited farmers that understand in detail about the disease of Jatropha Curcas and it may cause a big loss during harvesting when the disease occured with no further action. An expert system can help the farmers to identify the lant diseases of Jatropha Curcas. The objective of this research is to compare several identification and classification methods, such as Decision Tree, K-Nearest Neighbor and its modification. The comparison is based on the accuracy. Modified K-Nearest Neighbor method given the best accuracy result that is 67.74%.
<span>Kenaf plant is a fibre plant whose stem bark is taken to be used as raw material for making geo-textile, particleboard, pulp, fiber drain, fiber board, and paper. The presence of plant pests and diseases that attack causes crop production to decrease. The detection of pests and diseases by farmers may be a challenging task. The detection can be done using artificial intelligence-based method. Convolutional neural networks (CNNs) are one of the most popular neural network architectures and have been successfully implemented for image classification. However, the CNN method is still considered a long time in the process, so this method was developed into namely faster regional based convolution neural network (RCNN). As the selection of the input features largely determines the accuracy of the results, a pre-processing procedure is developed to transform the kenaf plant image into input features of faster RCNN. A computational experiment proves that the faster RCNN has a very short computation time by completing 10000 iterations in 3 hours compared to convolutional neural network (CNN) completing 100 iterations at the same time. Furthermore, Faster RCNN gets 77.50% detection accuracy and bounding box accuracy 96.74% while CNN gets 72.96% detection accuracy at 400 epochs. The results also prove that the selection of input features and its pre-processing procedure could produce a high accuracy of detection. </span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.