Processing of Magnetic Resonance Imaging(MRI) is one of the widely known best techniques to diagnose brain tumor since it gives better results than ultrasound or X-Ray images. The main objective is to diagnose the presence and extraction of brain tumor using MRI images. Image preprocessing includes contrast stretching, noise filtering and Adaptive Histogram Equalization(AHE). AHE gives a graphical representation of digital image without enhancing above the desired level. The next stage involves transferring the redundant information in input image to reduced set of features is called feature selection and is done by color, shape or texture of an image. Image is segmented using incorporation of Artificial Neural Networks(ANN) and Fuzzy logic called Adaptive Neuro-Fuzzy Inference System(ANFIS) wherein we get the desired output to differentiate tumor affected and normal image with its severity level. Since we deal with uncertainty much more, fuzzy logic serves as a vibrant tool in representing human knowledge as IF-THEN rules. MATLAB has been implemented in detection and extraction of tumor at an early stage.
Arabic is the main language of Al-Quran. Nowadays, many people are studying the Language of Al-Quran, called Quran Arabic. For the beginners, it is important for them to understand the syntactic relationship in a sentence found in the Qur'an. If they do not understand enough, the interpretation will be different and wrong. It will turn into dangerous because Al-Quran is a source of guidance for Muslims’ life. Dependency parsing is very important for linguistic research, especially for rich languages such as the Arabic Language. This study aims to build dependency parsing, in order to make it easier to get to understand syntactic relationship information in sentences. This study uses a parsing method called deterministic parsing, which the method used is shift-reduce parsing with the Easy-First parsing algorithm. The evaluation used labeled attachment score calculation. The score generated from the evaluation was 69.7, beforehand, the comparison both the system results and the gold standard have been done. 62 sentences found the correct head and relation in each word. The number of words found to be wrong is not more than 3 words in one sentence. Evaluation scores produced are not exorbitant due to the complicated tagset used and lacking test sentences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.