Background The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. Results Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. Conclusion These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly.
Previous experiments in suitable animal models and in mild hypercholesterolemic individuals have shown that the consumption of lupin proteins may be useful for controlling total and low-density lipoprotein (LDL) cholesterol levels. With the objective of providing evidence that peptides deriving from the hydrolysis of lupin proteins may be responsible of the observed activities and for investigating the mechanism of action, HepG2 cells were treated with lupin peptides obtained by either pepsin (P) or trypsin (T) hydrolysis, and molecular and functional investigations were performed on the LDL receptor/SREBP2 pathway. For the first time, this paper provides experimental evidence that lupin peptides are able to interfere with the HMGCoAR activity, up-regulating the LDL receptor (136 and 84% vs the control for P and T peptides, respectively, at 1 mg/mL) and SREBP2 proteins (148 and 73% vs the control for P and T peptides, respectively, at 1 mg/mL) via the activation of PI3K/Akt/GSK3β pathways and increasing the LDL uptake at HepG2 cell line (40 and 50% vs the control for P and T peptides, respectively, at 1 mg/mL). These results may be useful in explaining the activities observed in vivo in animals and humans treated with lupin protein.
The use of combinatorial peptide ligand libraries, containing hexapeptides terminating with a primary amine, or modified with a terminal carboxyl group, allowed discovering and identifying a large number of previously unreported proteins in cow's whey. Whereas comprehensive whey protein lists progressively increased in the last 6 years from 17 unique gene products to more than 100, our findings have considerably expanded this list to a total of 149 unique protein species, of which 100 were not described in previous proteomics studies. As an additional interesting result, a polymorphic alkaline protein was observed with a strong positive signal when blotted from an isoelectric focusing separation in gel and tested with sera of allergic patients. This polymorphic protein, found only after treatment with the peptide library, was identified as an immunoglobulin (Ig), a minor allergen that had been largely amplified. The list of cow's whey components here reported is by far the most comprehensive at present and could serve as a starting point for the functional characterization of low-abundance proteins possibly having novel pharmaceutical, diagnostic, and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.