Alongside their function in primary haemostasis and thrombo-inflammation, platelets are increasingly considered a bridge between mental, immunological and coagulation-related disorders. This review focuses on the link between platelets and the pathophysiology of major depressive disorder (MDD) and its most frequent comorbidities. Platelet- and neuron-shared proteins involved in MDD are functionally described. Platelet-related studies performed in the context of MDD, cardiovascular disease, and major neurodegenerative, neuropsychiatric and neurodevelopmental disorders are transversally presented from an epidemiological, genetic and functional point of view. To provide a complete scenario, we report the analysis of original data on the epidemiological link between platelets and depression symptoms suggesting moderating and interactive effects of sex on this association. Epidemiological and genetic studies discussed suggest that blood platelets might also be relevant biomarkers of MDD prediction and occurrence in the context of MDD comorbidities. Finally, this review has the ambition to formulate some directives and perspectives for future research on this topic.
This is the first report of a disease phenotype associated with mutation in humans.
We recently described a complex multisystem syndrome in which mild-moderate myopia segregated as an independent trait. A plethora of genes has been related to sporadic and familial myopia. More recently, in Chinese patients severe myopia (MYP25, OMIM:617238) has been linked to mutations in P4HA2 gene. Seven family members complaining of reduced distance vision especially at dusk underwent complete ophthalmological examination. Whole-exome sequencing was performed to identify the gene responsible for myopia in the pedigree. Moderate myopia was diagnosed in the family which was associated to the novel missense variant c.1147A > G p.(Lys383Glu) in the prolyl 4-hydroxylase,alpha-polypeptide 2 (P4HA2) gene, which catalyzes the formation of 4-hydroxyproline residues in the collagen strands. In vitro studies demonstrated P4HA2 mRNA and protein reduced expression level as well as decreased collagen hydroxylation and deposition in mutated fibroblast primary cultures compared to healthy cell lines. This study suggests that P4HA2 mutations may lead to myopic axial elongation of eyeball as a consequence of quantitative and structural alterations of collagen. This is the first confirmatory study which associates a novel dominant missense variant in P4HA2 with myopia in Caucasian patients. Further studies in larger cohorts are advisable to fully clarify genotype-phenotype correlations.
The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations.
Neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD) suffer from the lack of risk-predictive circulating biomarkers, and clinical diagnosis occurs only when symptoms are evident. Among potential biomarkers, platelet parameters have been associated with both disorders. However, these associations have been scarcely investigated at the genetic level. Here, we tested genome-wide coheritability based on common genetic variants between platelet parameters and PD/AD risk, through Linkage Disequilibrium Score Regression. This revealed a significant genetic correlation between platelet distribution width (PDW), an index of platelet size variability, and PD risk (r g [SE] = 0.080 [0.034]; p = 0.019), which was confirmed by a summarysummary polygenic score analysis, where PDW explained a small but significant proportion PD risk (<1%). AD risk showed no significant correlations, although a negative trend was observed with PDW (rg [SE] =-0.088 [0.053]; p=0.096), in line with previous epidemiological reports. These findings suggest the existence of limited shared genetic bases between PDW and PD and warrant further investigations to clarify the genes involved in this relation. Additionally, they suggest that the association between platelet parameters and AD risk is more environmental in nature, prompting an investigation into which factors may influence these traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.