Currently, the use of nanoparticles is having an impact on agricultural production. There is evidence that copper nanoparticles have a strong impact on the growth and development of different crops. Biofortification specifically with (NPs Cu) improves the nutritional quality of food and its consumption has a positive influence on the health of humanity. The objective of this study consisted in evaluating the foliar application of copper nanoparticles (NPs Cu), on the weight of the fruit, nutraceutical quality and concentration of copper in melon fruit pulp. The treatments consisted of five doses of Cu NPs: 0, 1.8, 3.6, 5.4, 7.2 and 9.0 mg L -1 sprinkled foliarly. The variables evaluated were fruit weight, polar and equatorial diameter, firmness, total soluble solids, bioactive compounds and copper content in melon pulp. The results obtained indicated that the foliar application of NPs Cu, improved the physical and nutraceutical quality and the concentration of Cu in melon fruits. The highest weight and the best diameters of the fruit were obtained with the highest concentrations of NPs Cu (7.2 and 9.0 mg L-1). The concentration of 3.6 mg L-1 Cu NPs presented the highest antioxidant capacity with a value of 117,713 mg equiv. Trolox * 100 mg -1 PF, and higher content of phenols with 243.68 mg ac. gallic / 100 g FP, exceeding the concentration of 1.8 mg L -1 by 39% and the control treatment by 48%. The 3.6 and 5.4 mg L-1 treatments obtained the highest amount of flavonoids with values of 149.903 and 148.29 mg QE / 100 g -1 FP, respectively. Regarding the copper concentration in the melon fruit pulp, the 9.0 mg L-1 treatment presented the highest concentration with a value of 5.39 mg kg -1 PS; The results show that, statistically, there is a correlation between the copper nanoparticles and the phytochemical variables in melon fruits. It is concluded that the use of Cu NPs can be an alternative to enrich melon fruits, and could help to solve the copper deficiency in the diet of the population.
Tomato is a vegetable crop with probiotic interest. Currently subject to a global biosecurity emergency due to the epidemic caused by COVID-19, humanity is seeking to maintain its health and become stronger by eating vegetables that have probiotic properties. Considering the request of tomato farmers in the Comarca Lagunera (CL) region, the objective of this work consisted of determining the impact of bioinoculation with Azospirillum brasilense (Ab) and solarized manure (M) on the yield and phytochemical quality of tomato fruits produced in shade mesh. Seeds of the saladette variety TOP 2299 were inoculated with Ab at 1 × 108 CFU.mL. Before 46 days after being sowed, seedlings were transplanted in soil enriched with manure solarized at a rate of 0, 40, 80, 120 and 160 t ha−1; a chemical fertilization (CHF) treatment was also adopted (366-95-635). Emergence, growth, root length, bromatological studies (protein and lipids in plant), yield and organoleptic (Vit C, phenols, flavonoids and lycopene) variables were considered. The results show that biofertilization based on Ab + M40 can be an alternative to produce tomato in shade-house conditions in the CL compared with non-inoculated and CHF treatments.
En la Comarca Lagunera, México, se encuentran invernaderos y casas de sombra dedicados a cultivar tomate (Solanum Lycopersicum L.), con alta productividad. Recientemente se inició la búsqueda de alternativas para mejorar la producción y satisfacer la demanda de alimentos sanos. El objetivo del trabajo fue caracterizar una bacteria aislada de la endorizosfera de plantas de tomate y evaluar su uso combinado con estiercol solarizado para promover el crecimiento y rendimiento de tomate bajo condiciones de invernadero. La bacteria fue identificada como Bacillus cereus mediante el análisis del gen 16S rRNA y mostró capacidad para solubilizar fosfatos (halo de solubilización 5.123 ±0.702 mm), producir sideróforos (halo 6.54 mm) y ácido indolacético (5.9 μg ml-1). En invernadero, semilla de tomate variedad saladette TOP 2299 se inoculó con B. cereus a una concentración de 1×108 CFU ml-1 y 46 días después de la siembra, las plántulas se trasplantaron en suelo enriquecido con estiércol solarizado a razón de 0, 40, 80 t ha-1 o con fertilización química (N-P-K 366-95-635). Los resultados muestran que la aplicación de B. cereus + 40 t ha-1 de estiércol solarizado ejerce una influencia positiva sobre las plantas de tomate ya que promovió mayor altura (16%), más volumen de raíz (42%) e incrementos en el rendimiento (20%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.