Some adaptationist explanations are regarded as maximally solid and others fanciful just-so stories. Just-so stories are explanations based on very little evidence. Lack of evidence leads to circular-sounding reasoning: "this trait was shaped by selection in unseen ancestral populations and this selection must have occurred because the trait is present." Well-supported adaptationist explanations include evidence that is not only abundant but selected from comparative, populational, and optimality perspectives, the three adaptationist subdisciplines. Each subdiscipline obtains its broad relevance in evolutionary biology via assumptions that can only be tested with the methods of the other subdisciplines. However, even in the best-supported explanations, assumptions regarding variation, heritability, and fitness in unseen ancestral populations are always present. These assumptions are accepted given how well they would explain the data if they were true. This means that some degree of "circularity" is present in all evolutionary explanations. Evolutionary explanation corresponds not to a deductive structure, as biologists usually assert, but instead to ones such as abduction or induction. With these structures in mind, we show the way to a healthier view of "circularity" in evolutionary biology, and why integration across the comparative, populational, and optimality approaches is necessary.
"Adaptive radiation" is an evocative metaphor for explosive evolutionary divergence, which for over 100 years has given a powerful heuristic to countless scientists working on all types of organisms at all phylogenetic levels. However, success has come at the price of making "adaptive radiation" so vague that it can no longer reflect the detailed results yielded by powerful new phylogeny-based techniques that quantify continuous adaptive radiation variables such as speciation rate, phylogenetic tree shape, and morphological diversity. Attempts to shoehorn the results of these techniques into categorical "adaptive radiation: yes/no" schemes lead to reification, in which arbitrary quantitative thresholds are regarded as real. Our account of the life cycle of metaphors in science suggests that it is time to exchange the spent metaphor for new concepts that better represent the full range of diversity, disparity, and speciation rate across all of life.
Methodological controversies are an important but often neglected issue in the philosophy of science. Because experimental results often cannot settle controversies, other elements must be incorporated to debates. We introduce the notion of borrowed epistemic credibility to better understand the role that non-empirical elements play in such controversies, illustrating our proposal with a recent controversy in phylogeography. Our analysis shows how scientific controversies that spring from disagreements about methodological issues potentially involve deeper debates regarding what constitutes 'good science' in general, and suggests the reexamination of more general issues, such as the nature of inference, rationality, or objectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.