Gradient index sonic lenses based on two-dimensional sonic crystals are here designed, fabricated, and characterized. The index-gradient is achieved in these type of flat lenses by a gradual modification of the sonic crystal filling fraction along the direction perpendicular to the lens axis. The focusing performance is well described by an analytical model based on ray theory as well as by numerical simulations based on the multiple-scattering theory.
We present the design, construction, and experimental characterization of the acoustic analogue of the so called photonic black-hole. The fabricated sample has cylindrical symmetry and consists of two parts, a shell that bends the sound towards the center and a core that dissipates its energy. The shell is made of a metamaterial that perfectly matches the acoustic impedance of air and behaves like a gradient index lens. The experimental data obtained in a multi-modal impedance chamber demonstrate that the proposed acoustic black-hole acts like an onmidirectional broadband absorber with strong absorbing efficiency.
This Letter presents the design, fabrication, and experimental characterization of a directional three-dimensional acoustic cloak for airborne sound. The cloak consists of 60 concentric acoustically rigid tori surrounding the cloaked object, a sphere of radius 4 cm. The major radii and positions of the tori along the symmetry axis are determined using the condition of complete cancellation of the acoustic field scattered from the sphere. They are obtained through an optimization technique that combines genetic algorithm and simulated annealing. The scattering cross section of the sphere with the cloak, which is the magnitude that is minimized, is calculated using the method of fundamental solutions. The low-loss fabricated cloak shows a reduction of the 90% of the sphere scattering cross section at the frequency of 8.55 kHz.
This work presents a method for the realization of gradient index devices for flexural waves in thin plates. Unlike recent approaches based on phononic crystals, the present approach is based on the thickness-dependence of the dispersion relation of flexural waves, which is used to create gradient index devices by means of local variations of the plate's thickness. Numerical simulations of known circularly symmetrical gradient index lenses have been performed. These simulations have been done using the multilayer multiple scattering method and the results prove their broadband efficiency and omnidirectional properties. Finally, finite element simulations employing the full three-dimensional elasticity equations also support the validity of the designed approach. V C 2014 AIP Publishing LLC. [http://dx
heavy masses, the work reported here provides a simple approach to construct low-cost structures with potential applications in aeronautic and astronautic industries for broadband vibration suppression at low frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.