Predictive monitoring of business processes is a challenging topic of process mining which is concerned with the prediction of process indicators of running process instances. The main value of predictive monitoring is to provide information in order to take proactive and corrective actions to improve process performance and mitigate risks in real time. In this paper, we present an approach for predictive monitoring based on the use of evolutionary algorithms. Our method provides a novel event window-based encoding and generates a set of decision rules for the run-time prediction of process indicators according to event log properties. These rules can be interpreted by users to extract further insight of the business processes while keeping a high level of accuracy. Furthermore, a full software stack consisting of a tool to support the training phase and a framework that enables the integration of run-time predictions with business process management systems, has been developed. Obtained results show the validity of our proposal for two large real-life datasets: BPI Challenge 2013 and IT Department of Andalusian Health Service (SAS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.