In this paper we propose a kinematic approach for tracked mobile robots in order to improve motion control and pose estimation. Complex dynamics due to slippage and track-soil interactions make it difficult to predict the exact motion of the vehicle on the basis of track velocities. Nevertheless, real-time computations for autonomous navigation require an effective kinematics approximation without introducing dynamics in the loop. The proposed solution is based on the fact that the instantaneous centers of rotation (ICRs) of treads on the motion plane with respect to the vehicle are dynamics-dependent, but they lie within a bounded area. Thus, optimizing constant ICR positions for a particular terrain results in an approximate kinematic model for tracked mobile robots. Two different approaches are presented for off-line estimation of kinematic parameters: (i) simulation of the stationary response of the dynamic model for the whole velocity range of the vehicle; (ii) introduction of an experimental setup so that a genetic algorithm can produce the model from actual sensor readings. These methods have been evaluated for on-line odometric computations and low-level motion control with the Auriga-α mobile robot on a hard-surface flat soil at moderate speeds.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground-and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
The paper reports on mobile robot motion estimation based on matching points from successive two-dimensional ͑2D͒ laser scans. This ego-motion approach is well suited to unstructured and dynamic environments because it directly uses raw laser points rather than extracted features. We have analyzed the application of two methods that are very different in essence: ͑i͒ A 2D version of iterative closest point ͑ICP͒, which is widely used for surface registration; ͑ii͒ a genetic algorithm ͑GA͒, which is a novel approach for this kind of problem. Their performance in terms of real-time applicability and accuracy has been compared in outdoor experiments with nonstop motion under diverse realistic navigation conditions. Based on this analysis, we propose a hybrid GA-ICP algorithm that combines the best characteristics of these pure methods. The experiments have been carried out with the tracked mobile robot Auriga-␣ and an on-board 2D laser scanner.
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.