We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.
The international planning competition (IPC) is an important driver for planning research. The general goals of the IPC include pushing the state of the art in planning technology by posing new scientific challenges, encouraging direct comparison of planning systems and techniques, developing and improving a common planning domain definition language, and designing new planning domains and problems for the research community. This paper focuses on the deterministic part of the fifth international planning competition (IPC5), presenting the language and benchmark domains that we developed for the competition, as well as a detailed experimental evaluation of the deterministic planners that entered IPC5, which helps to understand the state of the art in the field.We introduce an extension of PDDL, called PDDL3, allowing the user to express strong and soft constraints about the structure of the desired plans, as well as strong and soft problem goals. We discuss the expressive power of the new language focusing on the restricted version that was used in IPC5, for which we give some basic results about its compilability into PDDL2. Moreover, we study the relative performance of the IPC5 planners in terms of solved problems, CPU time, and plan quality; we analyse their behaviour with respect to the winners of the previous competition; and we evaluate them in terms of their capability of dealing with soft goals and constraints, and of finding good quality plans in general. Overall, the results indicate significant progress in the field, but they also reveal that some important issues remain open and require further research, such as dealing with strong constraints and computing high quality plans in metric-time domains and domains involving soft goals or constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.