Good air quality is essential for both human beings and the environment in general. The three most harmful air pollutants are nitrogen dioxide (NO2), ozone (O3) and particulate matter. Due to the high cost of monitoring stations, few examples of this type of infrastructure exist, and the use of low-cost sensors could help in air quality monitoring. The cost of metal-oxide sensors (MOS) is usually below EUR 10 and they maintain small dimensions, but their use in air quality monitoring is only valid through an exhaustive calibration process and subsequent precision analysis. We present an on-field calibration technique, based on the least squares method, to fit regression models for low-cost MOS sensors, one that has two main advantages: it can be easily applied by non-expert operators, and it can be used even with only a small amount of calibration data. In addition, the proposed method is adaptive, and the calibration can be refined as more data becomes available. We apply and evaluate the technique with a real dataset from a particular area in the south of Spain (Granada city). The evaluation results show that, despite the simplicity of the technique and the low quantity of data, the accuracy obtained with the low-cost MOS sensors is high enough to be used for air quality monitoring.
The tail value at risk at level p, with p ∈ ( 0 , 1 ) , is a risk measure that captures the tail risk of losses and asset return distributions beyond the p quantile. Given two distributions, it can be used to decide which is riskier. When the tail values at risk of both distributions agree, whenever the probability level p ∈ ( 0 , 1 ) , about which of them is riskier, then the distributions are ordered in terms of the increasing convex order. The price to pay for such a unanimous agreement is that it is possible that two distributions cannot be compared despite our intuition that one is less risky than the other. In this paper, we introduce a family of stochastic orders, indexed by confidence levels p 0 ∈ ( 0 , 1 ) , that require agreement of tail values at risk only for levels p > p 0 . We study its main properties and compare it with other families of stochastic orders that have been proposed in the literature to compare tail risks. We illustrate the results with a real data example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.