Click-through rate (CTR) prediction is a critical task in online display advertising. The data involved in CTR prediction are typically multi-field categorical data, i.e., every feature is categorical and belongs to one and only one field. One of the interesting characteristics of such data is that features from one field often interact differently with features from different other fields. Recently, Fieldaware Factorization Machines (FFMs) have been among the best performing models for CTR prediction by explicitly modeling such difference. However, the number of parameters in FFMs is in the order of feature number times field number, which is unacceptable in the real-world production systems. In this paper, we propose Field-weighted Factorization Machines (FwFMs) to model the different feature interactions between different fields in a much more memory-efficient way. Our experimental evaluations show that FwFMs can achieve competitive prediction performance with only as few as 4% parameters of FFMs. When using the same number of parameters, FwFMs can bring 0.92% and 0.47% AUC lift over FFMs on two real CTR prediction data sets.
Conversion prediction plays an important role in online advertising since Cost-Per-Action (CPA) has become one of the primary campaign performance objectives in the industry. Unlike click prediction, conversions have different types in nature, and each type may be associated with different decisive factors. In this paper, we formulate conversion prediction as a multi-task learning problem, so that the prediction models for different types of conversions can be learned together. These models share feature representations, but have their specific parameters, providing the benefit of information-sharing across all tasks. We then propose Multi-Task Field-weighted Factorization Machine (MT-FwFM) to solve these tasks jointly. Our experiment results show that, compared with two state-of-the-art models, MT-FwFM improve the AUC by 0.74% and 0.84% on two conversion types, and the weighted AUC across all conversion types is also improved by 0.50%.
We consider an online revenue maximization problem over a finite time horizon subject to lower and upper bounds on cost. At each period, an agent receives a context vector sampled i.i.d. from an unknown distribution and needs to make a decision adaptively. The revenue and cost functions depend on the context vector as well as some fixed but possibly unknown parameter vector to be learned. We propose a novel offline benchmark and a new algorithm that mixes an online dual mirror descent scheme with a generic parameter learning process. When the parameter vector is known, we demonstrate an O( √ T ) regret result as well an O( √ T ) bound on the possible constraint violations. When the parameter is not known and must be learned, we demonstrate that the regret and constraint violations are the sums of the previous O( √ T ) terms plus terms that directly depend on the convergence of the learning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.