This article reports a work on the three-dimensional flow simulation in a centrifugal pump operating in reverse mode. The simulations were carried out with the commercial code Fluent using unsteady flow calculations together with a sliding mesh technique. Hence, it was possible to account for the effect of blade—tongue interactions on the local flow. The numerical predictions were compared with the experimentally determined performance characteristics and also with the static pressure distribution obtained around the periphery of the impeller. Once validated, the numerical model was used to investigate the global flow. Additionally, the total radial force (steady and unsteady components) on the impeller for a number of flowrates was estimated. It was found that the unsteady radial force (peak to peak) varied between 24 and 54.3 per cent of the steady value within the considered flow interval. The maximum force amplitude was reached when the trailing edge of one blade (pressure side) was located 3° downstream of the tongue tip.
Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the material behavior using parametric changes in rheological properties under testing. Additionally, most bioinks have specific functionalities and their properties might widely change with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for all combinations. Although these ranges are small and define a good thermo-responsive bioink, they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink provides a very stable behavior with low shear stress, but other bioprinting parameters must be set up to get a stable filament width.
Vaneless centrifugal pumps are reversible turbomachines that can operate also as centripetal turbines in low and very low-head power plants. However, the general performance in reverse mode is difficult to predict since the internal flow patterns are different from pump mode and the performance characteristics are not usually provided by manufacturers. This article presents numerical and experimental investigations on the operation of a reverse-running pump–turbine. The numerical calculations were carried out by solving the full unsteady Reynolds-averaged Navier–Stokes equations with the commercial code Fluent for several flowrates between 20 per cent and 160 per cent of rated conditions and both modes of operation. A complementary series of experimental measurements were performed in a test rig in order to obtain the general characteristics of the machine in pump and turbine modes, with the purpose of validating the numerical predictions. Once validated, the numerical model was used to investigate the flow patterns at some significant locations by means of pressure and velocity contours, and also by vector maps. Additionally, the model allowed the estimation of the steady load on the impeller as a function of flowrate in both modes of operation. It was concluded that, while the radial load in reverse mode is three times smaller than in pump mode, the axial load can be up to 1.6 times larger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.