Naive T cells are stimulated by antigen-presenting dendritic cells (DCs) in secondary lymphoid organs, but whether other types of cell participate in T cell priming is unclear. Here we show in mice that natural killer (NK) cells, which are normally excluded from lymph nodes, are rapidly recruited in a CCR7-independent, CXCR3-dependent manner to lymph nodes on stimulation by the injection of mature DCs. Recruitment of NK cells is also induced by some, but not all, adjuvants and correlates with the induction of T helper cell type 1 (T(H)1) responses. NK cell depletion and reconstitution experiments show that NK cells provide an early source of interferon-gamma (IFN-gamma) that is necessary for T(H)1 polarization. Taken together, our results identify an induced pathway of NK cell migration in antigen-stimulated lymph nodes and a mechanism by which some adjuvants may facilitate T(H)1 responses.
Antigen-pulsed dendritic cells (DCs) are used as natural adjuvants for vaccination, but the factors that influence the efficacy of this treatment are poorly understood. We investigated the parameters that affect the migration of subcutaneously injected mouse-mature DCs to the draining lymph node. We found that the efficiency of DC migration varied with the number of injected DCs and that CCR7+/+ DCs migrating to the draining lymph node, but not CCR7−/− DCs that failed to do so, efficiently induced a rapid increase in lymph node cellularity, which was observed before the onset of T cell proliferation. We also report that DC migration could be increased up to 10-fold by preinjection of inflammatory cytokines that increased the expression of the CCR7 ligand CCL21 in lymphatic endothelial cells. The magnitude and quality of CD4+ T cell response was proportional to the number of antigen-carrying DCs that reached the lymph node and could be boosted up to 40-fold by preinjection of tumor necrosis factor that conditioned the tissue for increased DC migration. These results indicate that DC number and tissue inflammation are critical parameters for DC-based vaccination.
T lymphocytes lacking the lymph node-homing receptors L-selectin and CCR7 do not migrate to lymph nodes in the steady state. Instead, we found here that lymph nodes draining sites of mature dendritic cells or adjuvant inoculation recruited L-selectin-negative CCR7- effector and memory CD8+ T cells. This recruitment required CXCR3 expression on T cells and occurred through high endothelial venules in concert with lumenal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells established stable interactions with and killed antigen-bearing dendritic cells, limiting the ability of these dendritic cells to activate naive CD4+ and CD8+ T cells. The inducible recruitment of blood-borne effector and memory T cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.
It is uncertain whether NK cells modulate T cell memory differentiation. By using a genetic model that allows the selective depletion of NK cells, we show in this study that NK cells shape CD8+ T cell fate by killing recently activated CD8+ T cells in an NKG2D- and perforin-dependent manner. In the absence of NK cells, the differentiation of CD8+ T cells is strongly biased toward a central memory T cell phenotype. Although, on a per-cell basis, memory CD8+ T cells generated in the presence or the absence of NK cells have similar functional features and recall capabilities, NK cell deletion resulted in a significantly higher number of memory Ag-specific CD8+ T cells, leading to more effective control of tumors carrying model Ags. The enhanced memory responses induced by the transient deletion of NK cells may provide a rational basis for the design of new vaccination strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.