Synapses are specialized communication points between neurons, and their number is a major determinant of cognitive abilities. These dynamic structures undergo developmental-and activity-dependent changes. During brain aging and certain diseases, synapses are gradually lost, causing mental decline. It is, thus, critical to identify the molecular mechanisms controlling synapse number. We show here that the levels of phosphoinositide 3 kinase (PI3K) regulate synapse number in both Drosophila larval motor neurons and adult brain projection neurons. The supernumerary synapses induced by PI3K overexpression are functional and elicit changes in behavior. Remarkably, PI3K activation induces synaptogenesis in aged adult neurons as well. We demonstrate that persistent PI3K activity is necessary for synapse maintenance. We also report that PI3K controls the expression and localization of synaptic markers in human neuroblastoma cells, suggesting that PI3K synaptogenic activity is conserved in humans. Thus, we propose that PI3K stimulation can be applied to prevent or delay synapse loss in normal aging and in neurological disorders.
System consolidation, as opposed to cellular consolidation, is defined as the relatively slow process of reorganizing the brain circuits that maintain long-term memory. This concept is founded, in part, on observations made in mammals that recently formed memories become progressively independent on brain regions initially involved in their acquisition and retrieval, and dependent on other brain regions for their long-term storage. Here we present evidence that olfactory appetitive and aversive memories in Drosophila evolve using a system-like consolidation process. We show that all three classes of mushroom body neurons (MBn) are involved in the retrieval of short- and intermediate-term memory. With the passage of time, memory retrieval becomes independent of α′/β′ and γ MBn, and long-term memory becomes completely dependent on α/β MBn. This shift in neuronal dependency for behavioral performance is paralleled by shifts in the activity of the relevant neurons during the retrieval of short- vs long-term memories. Moreover, transient neuron inactivation experiments show that the α′/β′ MBn have a time-limited role in memory processing using flies trained to have both early and remote memories. These results argue that system consolidation is not a unique feature of the mammalian brain and memory systems, but rather a general and conserved feature of how different temporal memories are encoded from relatively simple to complex brains.
Cellular ultrastructures for signal integration are unknown in any nervous system. The ellipsoid body (EB) of the Drosophila brain is thought to control locomotion upon integration of various modalities of sensory signals with the animal internal status. However, the expected excitatory and inhibitory input convergence that virtually all brain centres exhibit is not yet described in the EB. Based on the EB expression domains of genetic constructs from the choline acetyl transferase (Cha), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) genes, we identified a new set of neurons with the characteristic ring-shaped morphology (R neurons) which are presumably cholinergic, in addition to the existing GABA-expressing neurons. The R1 morphological subtype is represented in the Cha- and TH-expressing classes. In addition, using transmission electron microscopy, we identified a novel type of synapse in the EB, which exhibits the precise array of two independent active zones over the same postsynaptic dendritic domain, that we named 'agora'. This array is compatible with a coincidence detector role, and represents ~8% of all EB synapses in Drosophila. Presumably excitatory R neurons contribute to coincident synapses. Functional silencing of EB neurons by driving genetically tetanus toxin expression either reduces walking speed or alters movement orientation depending on the targeted R neuron subset, thus revealing functional specialisations in the EB for locomotion control.
Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause-effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses-without affecting the number of cells-in five subsets of local interneurons of the Drosophila olfactory glomeruli and measured the behavioral effects on olfactory perception. The neuron subsets were chosen under the criteria of GABA or ChAT expression. The reduction of one subset of synapses, mostly inhibitory, converted the responses to all odorants and concentrations tested as repulsive, while the reduction of another subset, mostly excitatory, led to a shift toward attraction. However, the simultaneous reduction of both synapse subsets restored normal perception. One group of local interneurons proved unaffected by the induced synapse loss in the perception of some odorants, indicating a functional specialization of these cells. Using genetic tools for space and temporal control of synapse number decrease, we show that the perception effects are specific to the local interneurons, rather than the mushroom bodies, and are not based on major structural changes elicited during development. These findings demonstrate that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.