Although deep learning pathology diagnostic algorithms are proving comparable results with human experts in a wide variety of tasks, they still require a huge amount of well annotated data for training. Generating such extensive and well labelled datasets is time consuming and is not feasible for certain tasks and so, most of the medical datasets available are scarce in images and therefore, not enough for training. In this work we validate that the use of few shot learning techniques can transfer knowledge from a well defined source domain from Colon tissue into a more generic domain composed by Colon, Lung and Breast tissue by using very few training images. Our results show that our few-shot approach is able to obtain a balanced accuracy (BAC) of 90 % with just 60 training images, even for the Lung and Breast tissues that were not present on the training set. This outperforms the finetune transfer learning approach that obtains 73 % BAC with 60 images and requires 600 images to get up to 81 % BAC.
Background: Despite the increasing use of intraoperative facial nerve monitoring during parotid gland surgery (PGS) and the improvement in the preoperative radiological assessment, facial nerve injury (FNI) remains the most severe complication after PGS. Until now, no studies have been published regarding the application of machine learning (ML) for predicting FNI after PGS. We hypothesize that ML would improve the prediction of patients at risk. Methods: Patients who underwent PGS for benign tumors between June 2010 and June 2019 were included.Results: Regarding prediction accuracy and performance of each ML algorithm, the K-nearest neighbor and the random forest achieved the highest sensitivity, specificity, positive predictive value, negative predictive value F-score, receiver operating characteristic (ROC)earea under the ROC curve, and accuracy globally. The K-nearest neighbor algorithm achieved performance values above 0.9 for specificity, negative predictive value, F-score and ROC earea under the ROC curve, and the highest sensitivity and positive predictive value. Conclusions: This study demonstrates that ML prediction models can provide evidencebased predictions about the risk of FNI to otolaryngologists and patients. It is hoped that such algorithms, which use clinical, radiological, histological, and cytological information, can improve the information given to patients before surgery so that they can be better informed of any potential complications.
(1) Background: Despite the increasing use of intraoperative facial nerve monitoring during parotid gland surgery or the improvement in the preoperative radiological assessment, facial nerve injury (FNI) continues to be the most feared complication; (2) Methods: patients who underwent parotid gland surgery for benign tumors between June 2010 and June 2019 were included in this study aiming to make a proof of concept about the reliability of an artificial neural networks (AAN) algorithm for prediction of FNI and compared with a multivariate linear regression (MLR); (3) Results: Concerning prediction accuracy and performance, the ANN achieved the highest sensitivity (86.53% vs 46.23%), specificity (95.67% vs 92.59%), PPV (87.28% vs 66.94%), NPV (95.68% vs 83.37%), ROC–AUC (0.960 vs 0.769) and accuracy (93.42 vs 80.42) than MLR; and (4) Conclusions: ANN prediction models can be useful for otolaryngologists—head and neck surgeons—and patients to provide evidence-based predictions about the risk of FNI. As an advantage, the possibility to develop a calculator using clinical, radiological and histological or cytological information can improve our ability to generate patients counselling before surgery.
<b><i>Introduction:</i></b> Despite multiple prognostic indicators described for oral cavity squamous cell carcinoma (OCSCC), its management still continues to be a matter of debate. Machine learning is a subset of artificial intelligence that enables computers to learn from historical data, gather insights, and make predictions about new data using the model learned. Therefore, it can be a potential tool in the field of head and neck cancer. <b><i>Methods:</i></b> We conducted a systematic review. <b><i>Results:</i></b> A total of 81 manuscripts were revised, and 46 studies met the inclusion criteria. Of these, 38 were excluded for the following reasons: use of a classical statistical method (<i>N</i> = 16), nonspecific for OCSCC (<i>N</i> = 15), and not being related to OCSCC survival (<i>N</i> = 7). In total, 8 studies were included in the final analysis. <b><i>Conclusions:</i></b> ML has the potential to significantly advance research in the field of OCSCC. Advantages are related to the use and training of ML models because of their capability to continue training continuously when more data become available. Future ML research will allow us to improve and democratize the application of algorithms to improve the prediction of cancer prognosis and its management worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.